Based on its homology to the estrogen receptor and its roles in osteoblast and chondrocyte differentiation, the orphan nuclear receptor estrogen-related receptor α (ERRα (ESRRA)) is an intriguing therapeutic target for osteoporosis and other bone diseases. The objective of this study was to better characterize the molecular mechanisms by which ERRα modulates osteoblastogenesis. Experiments from multiple systems demonstrated that ERRα modulates Wnt signaling, a crucial pathway for proper regulation of bone development.
View Article and Find Full Text PDFA series of (hetero)arylpyrimidines agonists of the Wnt-beta-catenin cellular messaging system have been prepared. These compounds show activity in U2OS cells transfected with Wnt-3a, TCF-luciferase, Dkk-1 and tk-Renilla. Selected compounds show minimal GSK-3beta inhibition indicating that the Wnt-beta-catenin agonism activity most likely comes from interaction at Wnt-3a/Dkk-1.
View Article and Find Full Text PDFA high-throughput screening campaign to discover small molecule leads for the treatment of bone disorders concluded with the discovery of a compound with a 2-aminopyrimidine template that targeted the Wnt beta-catenin cellular messaging system. Hit-to-lead in vitro optimization for target activity and molecular properties led to the discovery of (1-(4-(naphthalen-2-yl)pyrimidin-2-yl)piperidin-4-yl)methanamine (5, WAY-262611). Compound 5 has excellent pharmacokinetic properties and showed a dose dependent increase in the trabecular bone formation rate in ovariectomized rats following oral administration.
View Article and Find Full Text PDFDkk1 is a secreted antagonist of the LRP5-mediated Wnt signaling pathway that plays a pivotal role in bone biology. Because there are no well-documented LRP5-based assays of Dkk1 binding, we developed a cell-based assay of Dkk1/LRP5 binding using radioactive (125)I-Dkk1. In contrast to LRP6, transfection of LRP5 alone into 293A cells resulted in a low level of specific binding that was unsuitable for routine assay.
View Article and Find Full Text PDFParathyroid hormone (PTH) activates multiple signaling pathways following binding to the PTH1 receptor in osteoblasts. Previous work revealed a discrepancy between cAMP stimulation and CRE reporter activation of truncated PTH peptides, suggesting that additional signaling pathways contribute to activation of the CRE. Using a CRE-Luciferase reporter containing multiple copies of the CRE stably transfected into the osteoblastic cell line Saos-2, we tested the ability of modulators of alternative pathways to activate the CRE or block the PTH-induced activation of the CRE.
View Article and Find Full Text PDFThe bone marrow microenvironment provides a unique opportunity in vivo to assess the role of genes in bone remodeling. The objective of this study was to determine whether Runx2 expression is regulated by rhBMP-2 in vivo and to examine the effect of Runx2 overexpression on bone in vivo. In the in vivo calvaria model we used, rhBMP-2 induced Runx2 protein expression in periosteal cells while in vitro, adenovirus-mediated Runx2 overexpression induced mineralization in mesenchymal stem cells.
View Article and Find Full Text PDFA single point mutation (G to T) in the low-density lipoprotein receptor related protein 5 (LRP5) gene results in a glycine to valine amino acid change (G171V) and is responsible for an autosomal dominant high bone mass trait (HBM) in two independent kindreds. LRP5 acts as a co-receptor to Wnts with Frizzled family members and transduces Wnt-canonical signals which can be antagonized by LRP5 ligand, Dickkopf 1 (Dkk1). In the presence of Wnt1, LRP5 or the HBM variant (LRP5-G171V) induces beta-catenin nuclear translocation and activates T cell factor (TCF)-luciferase reporter activity.
View Article and Find Full Text PDFIsogenic cell lines differing only in the expression of the protein of interest provide the ideal platform for cell-based screening. However, related natural lines differentially expressing the therapeutic target of choice are rare. Here the authors report a strategy for drug screening employing isogenic human cell lines in which the expression of the target protein is regulated by a gene-specific engineered zinc-finger protein (ZFP) transcription factor (TF).
View Article and Find Full Text PDFThere is considerable evidence implicating the cAMP-signaling pathway in the anabolic action of PTH; and to date, all PTH and PTHrp peptides that stimulate cyclic AMP are active in animal models of osteogenesis. We have tested two C-terminally truncated peptides, PTH(1-29) and a modified PTH(1-21) (MPTH(1-21)), in in vitro and in vivo assays of PTH action. Each of the C-terminally truncated peptides was of low nanomolar potency in assays of receptor binding and cAMP stimulation.
View Article and Find Full Text PDFThe Runx2 (CBFA1/AML3/PEBP2alphaA) transcription factor promotes lineage commitment and differentiation by activating bone phenotypic genes in postproliferative osteoblasts. However, the presence of Runx2 in actively dividing osteoprogenitor cells suggests that the protein may also participate in control of osteoblast growth. Here, we show that Runx2 is stringently regulated with respect to cell cycle entry and exit in osteoblasts.
View Article and Find Full Text PDF