Publications by authors named "Bhawna Chaubey"

Flaviviruses, such as West Nile and Dengue Virus, pose a significant and growing threat to global health. Central to the flavivirus life cycle are highly structured 5'- and 3'-untranslated regions (UTRs), which harbor conserved cis-acting RNA elements critical for viral replication and host adaptation. Despite their essential roles, detailed molecular insights into these RNA elements have been limited.

View Article and Find Full Text PDF

We report the discovery of drug-like small molecules that bind specifically to the precursor of the oncogenic and pro-inflammatory microRNA-21 with mid-nanomolar affinity. The small molecules target a local structure at the Dicer cleavage site and induce distinctive structural changes in the RNA, which correlate with specific inhibition of miRNA processing. Structurally conservative single nucleotide substitutions eliminate the conformational change induced by the small molecules, which is also not observed in other miRNA precursors.

View Article and Find Full Text PDF

The present study aims to establish a simple approach involving multi-field multinuclear longitudinal relaxation (R1) analysis of the solvents to decipher solute-solvent interactions during the solvation of model carbohydrates in aqueous trifluoroethanol (TFE) co-solvent systems (TFE:D2O). The behavior of D2O and TFE is monitored around β-CD (β-cyclodextrin) and glucose through R1D (2H) and R1F (19F), respectively. Correlation times (τc) are estimated for D2O and TFE for various % (v/v) compositions of TFE:D2O mixtures.

View Article and Find Full Text PDF

Understanding the nature of interactions between the aromatic organic pollutants with dissolved humic acid (HA) is fundamental for the prediction of their environmental fate and subsequent development of efficient remediation methods. The present study employs solution-state H/F NMR methods to investigate the non-covalent interaction between aqueous peat humic acid (Aldrich HA) and monoaromatic carboxylic acids (CA), viz., 2, 6 diflourobenzoic acid (DFBA) and its non-fluorinated analog, benzoic acid (BA).

View Article and Find Full Text PDF

2,2,2-Trifluoroethanol (TFE) is one of the fluoroalcohols that have been known to induce and stabilize an open helical structure in many proteins and peptides. The current study has benchmarked low-field F NMR relaxation and F Overhauser dynamic nuclear polarization (ODNP) by providing a brief account of TFE solvent dynamics in a model melittin (MLT, an antimicrobial peptide) solution with a TFE-DO cosolvent mixture at pH 7.4.

View Article and Find Full Text PDF

In the present study, we attempt to characterize fluorinated ligand-serum albumin interaction in solution by a set of one-dimensional F ligand-based experiments. In this regard, a model system diflunisal (DFL)-human serum albumin (HSA) has been chosen to benchmark the utility of F relaxation and diffusion-based experiments in deciphering ligand-protein interactions. Further, we extend the application of a similar set of F experiments to unravel the molecular interaction in an unexplored system of 2,6-difluorobenzoic acid (DFBA)-bovine serum albumin (BSA).

View Article and Find Full Text PDF

The present study aimed to evaluate the role of biofilm morphology, matrix content and surface hydrophobicity in the biofilm-forming capacity of and non- (NAC) spp. Biofilm formation was determined by microtitre plate assay and bright-field and scanning electron microscopy. The matrix carbohydrates, proteins and e-DNA were quantified by phenol-sulfuric acid, bicinchoninic acid and UV spectroscopy, respectively.

View Article and Find Full Text PDF

Analysis of the interaction of pesticides and their metabolites with the cellular proteins has drawn considerable attention in past several years to understand the effect of pesticides on environment and mankind. In this study, we have investigated the binding interaction of Bovine Serum Albumin (BSA) with a widely used organophosphorous insecticide chlorpyrifos (CPF), and its stable metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) to provide a comparative analysis of the two molecules by employing various spectroscopic techniques viz., UV-vis absorption, Circular Dichroism (CD), and Fluorescence spectroscopy.

View Article and Find Full Text PDF