Corticotrophin-releasing factor receptor 2β (CRFR2β) is expressed in the myocardium. In the present study we explore whether acute treatment with the neuropeptide corticotrophin-releasing factor (CRF) could induce cytoprotection against a lethal ischemic insult in the heart (isolated murine neonatal cardiac myocytes and the isolated Langendorff perfused rat heart) by activating CRFR2. In vitro, CRF offered cytoprotection when added prior to lethal simulated ischemic stress by reducing apoptotic and necrotic cell death.
View Article and Find Full Text PDFPituitary adenylyl cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) augment the biosynthesis of tyrosine hydroxylase (TH). We tested whether secretin belonging to the glucagon/PACAP/VIP superfamily would increase transcription of the tyrosine hydroxylase (Th) gene and modulate catecholamine secretion. Secretin activated transcription of the endogenous Th gene and its transfected promoter (EC(50) ∼4.
View Article and Find Full Text PDFExaggerated adrenergic activity is associated with human hypertension. The peptide urocortin 2 (Ucn 2) inhibits catecholamine synthesis and secretion from adrenal chromaffin cells in vitro and administration to mammals lowers blood pressure (BP). The chromogranin A-null mouse (Chga-/-) manifests systemic hypertension because of excessive catecholamine secretion from the adrenal and decreased catecholamine storage.
View Article and Find Full Text PDFIn acute myocardial infarction increased plasma levels of chromogranin A are correlated with decreased survival. At the human chromogranin A gene locus there are two naturally occurring amino acid substitution variants within the catestatin region, i.e.
View Article and Find Full Text PDFBackground: Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis. Common genetic variation at the human TH promoter predicts alterations in autonomic activity and blood pressure, but how such variation influences human traits and, specifically, whether such variation affects transcription are not yet known.
Methods And Results: Pairwise linkage disequilibrium across the TH locus indicated that common promoter variants (C-824T, G-801C, A-581G, and G-494A) were located in a single 5' linkage disequilibrium block in white, black, Hispanic, and Asian populations.
Circulating levels of catestatin (Cts; human chromogranin A352-372) decrease in the plasma of patients with essential hypertension. Genetic ablation of the chromogranin A (Chga) gene in mice increases blood pressure and pretreatment of Chga-null mice with Cts prevents blood pressure elevation, indicating a direct role of Cts in preventing hypertension. This notable vasoreactivity prompted us to test the direct cardiovascular effects and mechanisms of action of wild-type (WT) Cts and naturally occurring human variants (G364S-Cts and P370L-Cts) on myocardial and coronary functions.
View Article and Find Full Text PDFThe catecholamine release-inhibitory catestatin [Cts; human chromogranin (Cg) A(352-372), bovine CgA(344-364)] is a vasoreactive and anti-hypertensive peptide derived from CgA. Using the isolated avascular frog heart as a bioassay, in which the interactions between the endocardial endothelium and the subjacent myocardium can be studied without the confounding effects of the vascular endothelium, we tested the direct cardiotropic effects of bovine Cts and its interaction with beta-adrenergic (isoproterenol, ISO) and endothelin-1 (ET-1) signaling. Cts dose-dependently decreased stroke volume and stroke work, with a threshold concentration of 11 nM, approaching the in vivo level of the peptide.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2006
Skeletal muscle is the principal tissue responsible for insulin-stimulated glucose disposal and is a major site of peripheral insulin resistance. Urocortin 2 (Ucn 2), a member of the corticotropin-releasing factor (CRF) family, and its cognate type 2 CRF receptor (CRFR2) are highly expressed in skeletal muscle. To determine the physiological role of Ucn 2, we generated mice that are deficient in this peptide.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2006
erbB2/Her2, a ligandless receptor kinase, has pleiotropic effects on mammalian development and human disease. The absence of erbB2 signaling in cardiac myocytes results in dilated cardiomyopathy in mice, resembling the cardiotoxic effects observed in a subset of breast cancer patients treated with the anti-Her2 antibody herceptin. Emerging evidence suggests that erbB2 is pivotal for integrating signaling networks involving multiple classes of extracellular signals.
View Article and Find Full Text PDFPeptides of the corticotropin-releasing factor (CRF) family signal through the activation of two receptors, CRF receptor type 1 (CRFR1) and type 2 (CRFR2), both of which exist as multiple splice variants. We have identified a cDNA from mouse brain encoding a splice variant, soluble CRFR2alpha (sCRFR2alpha), in which exon 6 is deleted from the gene encoding CRFR2alpha. Translation of this isoform produces a predicted 143-aa soluble protein.
View Article and Find Full Text PDFEffects of the corticotropin-releasing factor (CRF) family of peptides are mediated through activation of two receptors, CRF receptor (CRFR) 1 and CRFR2. Based on the homology between known mammalian CRFR genes, we have isolated a cDNA encoding the mouse CRFR2alpha (mCRFR2alpha) ortholog from brain. The isolated cDNA encodes a 411-amino acid protein with high identity to the rat (approximately 97%) and human (approximately 93%) receptors.
View Article and Find Full Text PDFThe tyrosine kinase receptor erbB2, also known in humans as Her2, is a member of the epidermal growth factor receptor (EGFR or erbB1) family, which also includes erbB3 and erbB4. The erbBs were discovered in an avian erythroblastosis tumor virus and exhibited similarities to human EGFR (Yarden and Sliwkowski, 2001). Her2/erbB2 is highly expressed in many cancer types.
View Article and Find Full Text PDFPeptides encoded by the Urocortin (Ucn) II gene, also known as stresscopin-related peptide, were recently identified as new members of the corticotropin-releasing factor (CRF) family. Ucn II is a specific ligand for the type 2 CRF receptor (CRFR). We have demonstrated the peripheral distribution of mouse Ucn (mUcn) II transcripts by using specific mUcn II ribonuclease protection assays, RT-PCR, Southern hybridization, and DNA sequencing.
View Article and Find Full Text PDFCorticotropin-releasing factor (CRF) receptor (CRFR)-mediated activation of the ERKs 1/2-p42 and -44) has been reported for CRF, urocortin (Ucn)-I, and sauvagine. Recently two new members of the CRF/Ucn family of peptides have been identified, Ucn-II/stresscopin-related peptide and Ucn-III/stresscopin. Using Chinese hamster ovary cells stably expressing CRFR1 and CRFR2beta, we show that Ucn-I, Ucn-II and Ucn-III activate ERK1/2-p42, 44 via CRFR2beta.
View Article and Find Full Text PDFCorticotropin-releasing factor (CRF) receptor type 2beta (CRFR2beta) is expressed in the heart. Urocortin (Ucn)-I activation of CRFR2beta is cardioprotective against ischemic reperfusion (I/R) injury by stimulation of the ERKs1/2 p42, 44. However, by binding CRF receptor type 1, Ucn-I can also activate the hypothalamic stress axis.
View Article and Find Full Text PDFCardiotrophin-1 (CT-1) is an Interleukin-6 family cytokine with known hypertrophic and protective effects in cardiac cells. CT-1 and the corticotrophin releasing hormone-like hormone urocortin protect cardiac myocytes by the same p42/44 mitogen activated protein kinase (p42/44 MAPK) dependent pathway. We investigated whether urocortin is also hypertrophic in cardiac myocytes and whether it shares a common pathway with CT-1 for this effect.
View Article and Find Full Text PDFUrocortin (Ucn), is a peptide related to hypothalamic corticotrophin-releasing factor (CRF) and binds with a high affinity to the CRF-R2 beta receptor which is expressed in the heart. Ucn promotes cardiac myocyte survival against hypoxia reoxygenation (HR) injury and this involves activation of the mitogen activated protein kinase pathway (MEK1/2 p42/44 MAPK). In this study we report that Ucn stimulates the phosphorylation of protein kinase B (PKB/Akt) via phosphatidylinositol (PI) 3-OH kinase (PI-3 kinase).
View Article and Find Full Text PDFObjectives: To determine whether the cytokine cardiotrophin-1 (CT-1) can protect the adult heart against ischaemia/reperfusion when added either prior to ischaemia or at reperfusion.
Background: CT-1 has previously been shown to protect cultured embryonic or neonatal cardiocytes from cell death. To assess the therapeutic potential of CT-1, it is necessary to determine whether this effect can be observed in adult cardiac cells both in culture and most importantly in the intact heart.
The CBP and p300 co-activators play a key role in many aspects of gene regulation being recruited to the DNA via transcription factors that are targets for specific signaling pathways. It has previously been demonstrated that in neuronal cells the ability of CBP and p300 to activate transcription can be directly stimulated by nerve growth factor or calcium-activated signaling pathways. Here we demonstrate that, in cardiac cells, the activity of CBP and p300 is stimulated by phenylephrine (PE) treatment and that they are required for the activation of atrial naturetic factor (ANF) gene expression by PE.
View Article and Find Full Text PDF