Transcranial focused ultrasound (FUS) is a versatile, MR-guided, incisionless intervention with diagnostic and therapeutic applications for neurologic and psychiatric diseases. It is currently FDA-approved as a thermoablative treatment of essential tremor and Parkinson disease. However, other applications of FUS including BBB opening for diagnostic and therapeutic applications, sonodynamic therapy, histotripsy, and low-intensity focused ultrasound neuromodulation are all in clinical trials.
View Article and Find Full Text PDFNeurosurg Focus Video
October 2024
This video article presents a case study of a 70-year-old male with medically refractory essential tremor treated with magnetic resonance-guided focused ultrasound (MRgFUS). Following an initial successful ablation of the right thalamus, the patient underwent left-sided thalamotomy. After two tractography-guided sonications, the authors observed a significant reduction in his right-hand tremor with no immediate side effects.
View Article and Find Full Text PDFThe brain has a highly selective semipermeable blood barrier, termed the blood-brain barrier (BBB), which prevents the delivery of therapeutic macromolecular agents to the brain. The integration of MR-guided low-intensity pulsed focused ultrasound (FUS) with microbubble pre-injection is a promising technique for non-invasive and non-toxic BBB modulation. MRI can offer superior soft-tissue contrast and various quantitative assessments, such as vascular permeability, perfusion, and the spatial-temporal distribution of MRI contrast agents.
View Article and Find Full Text PDFBackground: Essential tremor (ET) is one of the most common movement disorders worldwide. In medically refractory ET, deep brain stimulation (DBS) of the ventral intermediate nucleus of the thalamus is the current standard of care. However, DBS carries an inherent 2% to 3% risk of hemorrhage, a risk that can be much higher in patients with concomitant coagulopathy.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
December 2023
Interest in transcranial MR imaging-guided focused ultrasound procedures has recently grown. These incisionless procedures enable precise focal ablation of brain tissue using real-time monitoring by MR thermometry. This article will provide an updated review on clinically applicable technical underpinnings and considerations of proton resonance frequency MR thermometry, the most common clinically used MR thermometry sequence.
View Article and Find Full Text PDFThe Archimedes spiral is a clinical tool that aids in the diagnosis and monitoring of essential tremor. However, spiral ratings may vary based on experience and training of the rating physician. This study sought to generate an objective standard model for tremor evaluation using convolutional neural networks.
View Article and Find Full Text PDFMRI-guided high-intensity focused ultrasound thalamotomy is an incisionless therapy for essential tremor. To reduce adverse effects, the field has migrated to treating at 2 mm above the anterior commissure-posterior commissure plane. We perform MRI-guided high-intensity focused ultrasound with an advanced imaging targeting technique, four-tract tractography.
View Article and Find Full Text PDFMagnetic resonance-guided high-intensity focused ultrasound thalamotomy is a Food and Drug Administration-approved treatment for essential tremor. The target, the ventral intermediate nucleus of the thalamus, is not visualized on standard, anatomic MRI sequences. Several recent reports have used diffusion tensor imaging to target the dentato-rubro-thalamic-tract.
View Article and Find Full Text PDF: Deep learning has shown promise for predicting the molecular profiles of gliomas using MR images. Prior to clinical implementation, ensuring robustness to real-world problems, such as patient motion, is crucial. The purpose of this study is to perform a preliminary evaluation on the effects of simulated motion artifact on glioma marker classifier performance and determine if motion correction can restore classification accuracies.
View Article and Find Full Text PDFThe fields of both radiology and radiation oncology have evolved considerably in the past few decades, resulting in an increased ability to delineate between tumor and normal tissue to precisely target and treat vertebral metastases with radiation therapy. These scientific advances have also led to improvements in assessing treatment response and diagnosing toxic effects related to radiation treatment. However, despite technological innovations yielding greatly improved rates of palliative relief and local control of osseous spinal metastases, radiation therapy can still lead to a number of acute and delayed posttreatment complications.
View Article and Find Full Text PDFTransient disruption of the blood-brain barrier (BBB) with focused ultrasound (FUS) is an emerging clinical method to facilitate targeted drug delivery to the brain. The focal noninvasive disruption of the BBB can be applied to promote the local delivery of hyperpolarized substrates. In this study, we investigated the effects of FUS on imaging brain metabolism using two hyperpolarized C-labeled substrates in rodents: [1-C]pyruvate and [1-C]glycerate.
View Article and Find Full Text PDFNeonatal data regarding SARS-CoV-2 is sparse from India. On review of hospital records from April- August, 2020, 18/423 (4.25%) neonates were SARS-CoV-2 RT-PCR positive.
View Article and Find Full Text PDFThe blood brain barrier (BBB) is a major obstacle to the delivery of therapeutics to the brain. Focused ultrasound (FUS) in combination with microbubbles can non-invasively open the BBB in a targeted manner. Bolus intravenous injections of microbubbles are standard practice, but dynamic influx and clearance mechanisms prevent delivery of a uniform dose with time.
View Article and Find Full Text PDFBackground: One of the most important recent discoveries in brain glioma biology has been the identification of the isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion status as markers for therapy and prognosis. 1p/19q co-deletion is the defining genomic marker for oligodendrogliomas and confers a better prognosis and treatment response than gliomas without it. Our group has previously developed a highly accurate deep-learning network for determining IDH mutation status using T2-weighted (T2w) MRI only.
View Article and Find Full Text PDFThe thalamic ventral intermediate nucleus (VIM) can be targeted for treatment of tremor by several procedures, including deep brain stimulation (DBS) and, more recently, MR-guided focused ultrasound (MRgFUS). To date, such targeting has relied predominantly on coordinate-based or atlas-based techniques rather than directly targeting the VIM based on imaging features. While general regional differences of features within the thalamus and some related white matter tracts can be distinguished with conventional imaging techniques, internal nuclei such as the VIM are not discretely visualized.
View Article and Find Full Text PDFWe developed a fully automated method for brain tumor segmentation using deep learning; 285 brain tumor cases with multiparametric magnetic resonance images from the BraTS2018 data set were used. We designed 3 separate 3D-Dense-UNets to simplify the complex multiclass segmentation problem into individual binary-segmentation problems for each subcomponent. We implemented a 3-fold cross-validation to generalize the network's performance.
View Article and Find Full Text PDFMagnetic resonance guided high intensity focused ultrasound is a novel, non-invasive, image-guided procedure that is able to ablate intracranial tissue with submillimetre precision. It is currently FDA approved for essential tremor and tremor dominant Parkinson's disease. The aim of this update is to review the limitations of current landmark-based targeting techniques of the ventral intermediate nucleus and demonstrate the role of emerging imaging techniques that are relevant for both magnetic resonance guided high intensity focused ultrasound and deep brain stimulation.
View Article and Find Full Text PDFAlthough the physical and biologic principles of radiation therapy have remained relatively unchanged, a technologic renaissance has led to continuous and ever-changing growth in the field of radiation oncology. As a result, medical devices, techniques, and indications have changed considerably during the past 20-30 years. For example, advances in CT and MRI have revolutionized the treatment planning process for a variety of central nervous system diseases, including primary and metastatic tumors, vascular malformations, and inflammatory diseases.
View Article and Find Full Text PDFBackground: Isocitrate dehydrogenase (IDH) mutation status has emerged as an important prognostic marker in gliomas. Currently, reliable IDH mutation determination requires invasive surgical procedures. The purpose of this study was to develop a highly accurate, MRI-based, voxelwise deep-learning IDH classification network using T2-weighted (T2w) MR images and compare its performance to a multicontrast network.
View Article and Find Full Text PDFJ Assoc Physicians India
December 2018
Objective: To study the socio economical and clinico radiological profile of 474 diagnosed MDR TB cases who came for the initiation of MDR TB regimen in DRTB center of R.D.Gardi Medical college, Ujjain.
View Article and Find Full Text PDF