Publications by authors named "Bhaumik Sutariya"

Rapid global urbanization and economic growth have significantly increased solid waste volumes, with hazardous waste posing substantial health and environmental risks. Co-processing strategies for industrial solid and hazardous waste as alternative fuels highlight the importance of integrated waste management for energy and material recovery. This study identifies and characterizes solid and hazardous industrial wastes with high calorific values from various industrial processes at Nirma Industries Limited.

View Article and Find Full Text PDF

The precise manipulation of the porous structure of the nanofiltration membrane is critical for unlocking enhanced separation efficiencies across various liquids and solutes. Ultrathin films of crosslinked macrocycles, specifically cyclodextrins (CDs), have drawn considerable attention in this area owing to their ability to facilitate precise molecular separation with high liquid permeance for both polar and non-polar liquids, resembling Janus membranes. However, the functional role of the intrinsic cavity of CD in liquid transport remains inadequately understood, demanding immediate attention in designing nanofiltration membranes.

View Article and Find Full Text PDF

Reverse osmosis (RO) effectively provides clean drinking water. Different RO membrane types are tailored to treat saline water feeds with varying characteristics. In the context of low brackish water feeds, the objective is to remove only a minimal excess of salinity through the membrane.

View Article and Find Full Text PDF

This study investigates the impact of solvent post-treatment on polyamide-based thin film composite (TFC) membranes, specifically examining the effect on commercial nanofiltration (NF) and reverse osmosis (RO) membranes. NaSO rejection and increase in pure water permeance (PWP) were considered as the output parameters. The disparity in Hansen solubility parameters (HSP) between the post-treatment solution and the polyamide layer of the TFC membrane, denoted by Ra, is well adapted to understand the enhancement in water permeance through the membranes upon treatment.

View Article and Find Full Text PDF