Publications by authors named "Bhattacharya Surajit"

Trisomy 21 (TS21), also known as Down syndrome (DS), increases pediatric mortality risk from respiratory syncytial virus (RSV) by nine-fold, yet its underlying immunological basis remains unclear. Here, we investigated RSV-induced immunological responses in TS21 airway epithelial cells (AECs), the primary site of respiratory virus entry and host defense. TS21 AECs exhibit hyperactive interferon (IFN) signaling and reduced RSV infectivity, but they also show impaired type-III IFN responses during viral infection.

View Article and Find Full Text PDF
Article Synopsis
  • * Severe viral infections can increase the risk of developing pediatric OSA, which is often caused by enlarged adenoids and tonsils.
  • * The review explores how respiratory viruses affect the development of upper airway lymphoid tissues and the relationship between OSA and viral infections, emphasizing the need for monitoring and new prevention strategies.
View Article and Find Full Text PDF

To assess the impact of postnatal processing on placental DNA methylation, array data from flash-frozen placental tissue was compared to perfluorocarbon-immersed and formalin-fixed paraffin-embedded placental tissue. We observed that tissue exposed to perfluorocarbon showed no significant DNA methylation differences when compared to unprocessed tissue, while formalin processing altered the quality and reliability of the data produced on the DNA methylation array platform. Placental DNA methylation allows for the study of gene-environment interactions that influence the fetal environment and development.

View Article and Find Full Text PDF
Article Synopsis
  • The absence of dystrophin protein in boys with Duchenne Muscular Dystrophy (DMD) leads to heart problems, but common mouse models don't show these issues until they are older, making it hard to study early cardiac effects.
  • The mdx mouse model with a DBA/2J genetic background (D2-) demonstrates early heart dysfunction, revealing increased inflammation and fibrosis as key contributors to juvenile cardiomyopathy.
  • Activating the N-formyl peptide receptor 2 (FPR2) can reduce chronic inflammation and fibrosis, offering a potential new treatment strategy to prevent heart problems in young D2-mdx mice with DMD.
View Article and Find Full Text PDF

This review highlights the roles of phloem in the long-distance transport and accumulation of As in rice plants, facilitating the formulation of new strategies to reduce the grain As content. Rice is a staple diet for a significant proportion of the global population. As toxicity is a major issue affecting the rice productivity and quality worldwide.

View Article and Find Full Text PDF

Objectives: Distinguishing between sporadic and germline/mosaic NF2-related schwannomatosis is important to ensure that patients have appropriate long-term care. With this report, we describe a unique case of a patient with 4 ipsilateral schwannomas and identify a combination of sequencing modalities that can accurately diagnose mosaic NF2-related schwannomatosis.

Methods: We present a 32-year-old woman with a familial history of vestibular schwannoma in her father and right-sided schwannomas involving the apical and basal turns of cochlea, lateral semicircular canal, and internal auditory canal (IAC).

View Article and Find Full Text PDF

Background: Disorders/differences of sex development (DSD) are congenital conditions in which the development of chromosomal, gonadal, or anatomical sex is atypical. With overlapping phenotypes and multiple genes involved, poor diagnostic yields are achieved for many of these conditions. The current DSD diagnostic regimen can be augmented by investigating transcriptome/proteome in vivo, but it is hampered by the unavailability of affected gonadal tissue at the relevant developmental stage.

View Article and Find Full Text PDF

Background: Lower respiratory tract infections (LRTIs) are the leading cause of infant morbidity and mortality worldwide, and altered metabolite production is recognised as a critical factor in LRTI pathogenesis.

Methods: This study aimed to identify prenatal metabolic changes associated with LRTI risk in infancy, using liquid chromatography-mass spectrometry unbiased metabolomics analysis on cord blood from 810 full-term newborns.

Results: We identified 22 compounds linked to LRTIs in infancy, enriched for purine degradation pathway (PDP) metabolites.

View Article and Find Full Text PDF

Thymic stromal lymphopoietin (TSLP) is a primarily epithelial-derived cytokine that drives type 2 allergic immune responses. Early life viral respiratory infections elicit high TSLP production, which leads to the development of type 2 inflammation and airway hyperreactivity. The goal of this study was to examine in vivo and in vitro the human airway epithelial responses leading to high TSLP production during viral respiratory infections in early infancy.

View Article and Find Full Text PDF

Background: During gestation, stressors to the fetus, including viral exposure or maternal psychological distress, can fundamentally alter the neonatal epigenome, and may be associated with long-term impaired developmental outcomes. The impact of in utero exposure to the COVID-19 pandemic on the newborn epigenome has yet to be described.

Methods: This study aimed to determine whether there are unique epigenetic signatures in newborns who experienced otherwise healthy pregnancies that occurred during the COVID-19 pandemic (Project RESCUE).

View Article and Find Full Text PDF

Recent genomic data points to a growing role for somatic mutations altering core histone and linker histone-encoding genes in cancer. However, the prevalence and the clinical and biological implications of histone gene mutations in malignant tumors remain incompletely defined. To address these knowledge gaps, we analyzed somatic mutations in 88 linker and core histone genes across 12,743 tumors from pediatric, adolescent and young adult (AYA), and adult cancer patients.

View Article and Find Full Text PDF

Autosomal-recessive polycystic kidney disease (ARPKD; MIM #263200) is a severe, hereditary, hepato-renal fibrocystic disorder that causes early childhood morbidity and mortality. Mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, which encodes the protein fibrocystin/polyductin complex (FPC), cause all typical forms of ARPKD. Several mouse lines carrying diverse, genetically engineered disruptions in the orthologous Pkhd1 gene have been generated, but none expresses the classic ARPKD renal phenotype.

View Article and Find Full Text PDF

Macrophages are essential for skeletal muscle homeostasis, but how their dysregulation contributes to the development of fibrosis in muscle disease remains unclear. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six clusters and unexpectedly found that none corresponded to traditional definitions of M1 or M2 macrophages.

View Article and Find Full Text PDF

The molecular characteristics of pediatric brain tumors have not only allowed for tumor subgrouping but have led to the introduction of novel treatment options for patients with specific tumor alterations. Therefore, an accurate histologic and molecular diagnosis is critical for optimized management of all pediatric patients with brain tumors, including central nervous system embryonal tumors. We present a case where optical genome mapping identified a ZNF532::NUTM1 fusion in a patient with a unique tumor best characterized histologically as a central nervous system embryonal tumor with rhabdoid features.

View Article and Find Full Text PDF

The monocytic/macrophage system is essential for skeletal muscle homeostasis, but its dysregulation contributes to the pathogenesis of muscle degenerative disorders. Despite our increasing knowledge of the role of macrophages in degenerative disease, it still remains unclear how macrophages contribute to muscle fibrosis. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages.

View Article and Find Full Text PDF

Objective: Li-Fraumeni syndrome (LFS) is a cancer predisposition syndrome caused by germline mutations in the TP53 gene. CNS tumors are the fourth most common tumor type in LFS, and recent screening guidelines demonstrate that early tumor detection is associated with improved long-term survival. However, there is a paucity of data regarding surgical intervention when lesions are identified in asymptomatic patients on surveillance imaging.

View Article and Find Full Text PDF

Konzo, a disease characterized by sudden, irreversible spastic paraparesis, affecting up to 10% of the population in some regions of Sub-Saharan Africa during outbreaks, is strongly associated with dietary exposure to cyanogenic bitter cassava. The molecular mechanisms underlying the development of konzo remain largely unknown. Here, through an analysis of 16 individuals with konzo and matched healthy controls from the same outbreak zones, we identified 117 differentially methylated loci involved in numerous biological processes that may identify cyanogenic-sensitive regions of the genome, providing the first study of epigenomic alterations associated with a clinical phenotype of konzo.

View Article and Find Full Text PDF

Neonatal brain injury renders the developing brain vulnerable to oxidative stress, leading to cognitive deficit. However, oxidative stress-induced damage to hippocampal circuits and the mechanisms underlying long-term changes in memory and learning are poorly understood. We used high oxygen tension or hyperoxia (HO) in neonatal mice of both sexes to investigate the role of oxidative stress in hippocampal damage.

View Article and Find Full Text PDF

The sheep is a valuable model to test whether hormone mechanisms that sexually differentiate the brain underlie the expression of sexual partner preferences because as many as 8% of rams prefer same-sex partners. Epigenetic factors such as DNA methylation act as mediators in the interaction between steroid hormones and the genome. Variations in the epigenome could be important in determining morphological or behavior differences among individuals of the same species.

View Article and Find Full Text PDF

Aging adversely affects inflammatory processes in the brain, which has important implications in the progression of neurodegenerative disease. Following traumatic brain injury (TBI), aged animals exhibit worsened neurological function and exacerbated microglial-associated neuroinflammation. Type I Interferons (IFN-I) contribute to the development of TBI neuropathology.

View Article and Find Full Text PDF

Motivation: While promoter methylation is associated with reinforcing fundamental tissue identities, the methylation status of distant enhancers was shown by genome-wide association studies to be a powerful determinant of cell-state and cancer. With recent availability of long reads that report on the methylation status of enhancer-promoter pairs on the same molecule, we hypothesized that probing these pairs on the single-molecule level may serve the basis for detection of rare cancerous transformations in a given cell population. We explore various analysis approaches for deconvolving cell-type mixtures based on their genome-wide enhancer-promoter methylation profiles.

View Article and Find Full Text PDF

Background: Currently available structural variant (SV) detection methods do not span the complete spectrum of disease-causing SVs. Optical genome mapping (OGM), an emerging technology with the potential to resolve diagnostic dilemmas, was performed to investigate clinically-relevant SVs in a 4-year-old male with an epileptic encephalopathy of undiagnosed molecular origin.

Methods: OGM was utilized to image long, megabase-size DNA molecules, fluorescently labeled at specific sequence motifs throughout the genome with high sensitivity for detection of SVs greater than 500 bp in size.

View Article and Find Full Text PDF