Introduction Assisted reproductive technologies (ART) rely on endometrial receptivity (ER) for successful embryo implantation. This study aimed to compare the impact of different progesterone administration routes on ER assessed using optimal time for endometrial receptivity analysis (OpERA) and clinical outcomes in ART cycles. Methods A retrospective cohort analysis was conducted on 281 infertile women who underwent in vitro fertilization (IVF).
View Article and Find Full Text PDFBackground Infertility remains a significant global challenge, and recurrent implantation failure (RIF) poses a considerable concern in assisted reproductive technology. Understanding the factors contributing to implantation failure is essential for developing accurate diagnostic tools and treatment strategies. Endometrial receptivity (ER) during the window of implantation is crucial for successful embryo implantation in in vitro fertilization (IVF) procedures.
View Article and Find Full Text PDFCordyceps militaris is a fungus with numerous therapeutic properties that has gained worldwide popularity due to its potential health benefits. The fruiting body of this mushroom is highly expensive and takes a longer time to produce, making mycelial a sustainable and cost-effective alternative. The study investigates and optimizes cultural and nutritional conditions to maximize mycelial biomass.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) is a result of a retroviral infection of SARS-CoV-2. Due to its virulence and high infection rate, it is a matter of serious concern and a global health emergency. Currently available COVID-19 vaccines approved by regulatory bodies around the world have been shown to provide significant protection against COVID-19.
View Article and Find Full Text PDFThe magnetic properties of 3d monometallic complexes can be tuned through geometric control, owing to their synthetic accessibility and relative structural simplicity. Monodentate ligands offer great potential for fine-tuning the coordination environment to engineer both the axial and rhombic zero-field splitting (ZFS) parameters. In [CoCl(DABCO)(HDABCO)] (), the trigonal bipyramidal Co(ii) centre has two bulky axial ligands and three equatorial chloride ligands.
View Article and Find Full Text PDFWe report a trinuclear mixed-valence {CoIICoIII2} complex, where the CoII centre adopts a trigonal bipyramidal geometry, leading to a large, easy-plane magnetic anisotropy and field-induced slow magnetic relaxation with a Raman-like relaxation process.
View Article and Find Full Text PDFMonometallic complexes based on 3d transition metal ions in certain axial coordination environments can exhibit appreciably enhanced magnetic anisotropy, important for memory applications, due to stabilisation of an unquenched orbital moment. For high-spin trigonal bipyramidal Ni(ii), if competing structural distortions can be minimised, this may result in an axial anisotropy that is at least an order of magnitude stronger than found for orbitally non-degenerate octahedral complexes. Broadband, high-field EPR studies of [Ni(MDABCO)Cl]ClO () confirm an unprecedented axial magnetic anisotropy, which pushes the limits of the familiar spin-only description.
View Article and Find Full Text PDFWe report a room temperature study on the electrical response of field-effect transistors (FETs) based on few-layered MoSe2, grown by a chemical vapor transport technique, mechanically exfoliated onto SiO2. In contrast to previous reports on MoSe2 FETs electrically contacted with Ni, MoSe2 FETs electrically contacted with Ti display ambipolar behavior with current on to off ratios up to 10(6) for both hole and electron channels when applying a small excitation voltage. A rather small hysteresis is observed when sweeping the back-gate voltage between positive and negative values, indicating the near absence of charge "puddles".
View Article and Find Full Text PDF