One of the challenges in developing cell lines for high-throughput screening in drug discovery is the labor- and time-intensive process required to create stable clonal cell lines that express specific reporters or drug targets. The authors report here the generation of a site-specific retargeting platform in 3 different cell lines: adherent HEK293, suspension CHO-S, and a human embryonic cell line (BGO1V). These platform cell lines were generated by using a combination of 2 site-specific integrases to develop a system that allows one to efficiently target a gene of interest to a specific locus and generates rapid production of homogeneous cell pools that stably express the gene of interest.
View Article and Find Full Text PDFBacteriophage recombinases can target specific loci in human embryonic stem cells (hESCs) at high efficiency, allowing for long-term expression of transgenes. In the present work, we describe a retargeting system where we used phiC31 integrase to target a plasmid to a pseudo-attP site in the cellular genome. The integration site was mapped and the chromosomal location evaluated for potential to be transcriptionally active in differentiated cells.
View Article and Find Full Text PDFAim: Stable expression of transgenes in stem cells has been a challenge due to the nonavailability of efficient transfection methods and the inability of transgenes to support sustained gene expression. Several methods have been reported to stably modify both embryonic and adult stem cells. These methods rely on integration of the transgene into the genome of the host cell, which could result in an expression pattern dependent on the number of integrations and the genomic locus of integration.
View Article and Find Full Text PDFAn important consideration in the design of multigene delivery technology is the availability of suitable vectors to introduce multiple genes stably and stoichiometrically into living cells and co-express these genes efficiently. As a promising system for this purpose, we developed multi-cDNA expression constructs harboring two to three tandemly situated cDNAs in a single plasmid. The utility of this vector system is amplified by combining it with the psiC31 recombinase system which mediates site-specific integration of the genes into naturally occurring chromosomal sequences.
View Article and Find Full Text PDFphiC31 integrase is a sequence-specific phage recombinase that can recombine two short DNA sequences called attB and attP. The enzyme can also promote genomic integration of plasmids carrying attB into native mammalian sequences having partial identity to attP. To increase the efficiency of integration, we mutated the phiC31 integrase gene and screened the mutants in human cells in an assay for higher recombination frequency between attB and attP.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small regulatory RNAs varying in length between 20 and 24 nucleotides. They are thought to play a key role during development by negative gene regulation at the post-transcriptional level. Recent studies using quantitative polymerase chain reaction (QPCR) and northern blot analysis have reported the presence of several miRNA unique to specific cell types.
View Article and Find Full Text PDFIt has previously been shown that the phage-derived phiC31 integrase can efficiently target native pseudo-attachment sites in the genome of various species in cultured cells, as well as in vivo. To demonstrate its utility in human embryonic stem cells (hESC), we have created hESC-derived clones containing expression constructs. Variant human embryonic stem cell lines BG01v and SA002 were used to derive lines expressing a green fluorescent protein (GFP) marker under control of either the human Oct4 promoter or the EF1alpha promoter.
View Article and Find Full Text PDFThis study evaluated the ability of five serine phage integrases, from phages A118, U153, Bxb1, phiFC1, and phiRV1, to mediate recombination in mammalian cells. Two types of recombination were investigated, including the ability of an integrase to mediate recombination between its own phage att sites in the context of a mammalian cell and the ability of an integrase to perform genomic integration pairing a phage att site with an endogenous mammalian sequence. We demonstrated that the A118 integrase mediated precise intra-molecular recombination of a plasmid containing its attB and attP sites at a frequency of approximately 50% in human cells.
View Article and Find Full Text PDFThe site-specific integrase from bacteriophage phiC31 functions in mammalian cells and is being applied for genetic engineering, including gene therapy. The phiC31 integrase catalyzes precise, unidirectional recombination between its 30-40-bp attP and attB recognition sites. In mammalian cells, the enzyme also mediates integration of plasmids bearing attB into native sequences that have partial sequence identity with attP, termed pseudo attP sites.
View Article and Find Full Text PDFPatients afflicted with severe laminin 5-deficient junctional epidermolysis bullosa (JEB) often die in infancy with massive cutaneous blistering. Prior approaches to genetically correct this disorder have relied on stable integration of wild-type LAMB3 sequences, using retroviral vectors. To develop a nonviral approach to JEB gene therapy, we used the phiC31 integrase, which mediates unidirectional genomic integration of plasmids containing a specific attB site.
View Article and Find Full Text PDFCurrent gene-transfer technologies display limitations in achieving effective gene delivery. Among these limitations are difficulties in stably integrating large corrective sequences into the genomes of long-lived progenitor-cell populations. Current larger-capacity viral vectors suffer from biosafety concerns, whereas plasmid-based approaches have poor efficiency of stable gene transfer.
View Article and Find Full Text PDF