This study aims to improve the current method of studying potentially toxic elements (PTEs) in urban dust using direct chemical evidence (from dust, rock, and emission source samples) and robust geochemical methods. The provenance of urban dust was determined using rare earth elements (REEs) and geochemical diagrams (V-Ni-Th*10, TiO vs. Zr, and Zr/Ti vs.
View Article and Find Full Text PDFIn this study, we simulate the irrigation of tomato plants with arsenic (As)-contaminated water (from 0 to 3.2 mg L) and investigate the effect of the application of silicon nanoparticle (Si NPs) in the form of silicon dioxide (0, 250, and 1000 mg L) on As uptake and stress. Arsenic concentrations were determined in substrate and plant tissue at three different stratums.
View Article and Find Full Text PDFEnviron Pollut
September 2021
We investigated population structure and arsenic bioaccumulation and distribution in zooplankton inhabiting highly contaminated freshwater with arsenic. We collected water and zooplankton samples over a 4 year period, determined environmental temperature as well as water temperature, pH, electrical conductivity (EC), total dissolved solids (TDS), oxidation-reduction potential (ORP), dissolved oxygen (DO), major cations and anions and total arsenic concentration. We identified zooplankton species and determined their abundance, length, sex ratios, and arsenic bioaccumulation and distribution in exposed organisms.
View Article and Find Full Text PDFArsenic transport in alluvial aquifers is usually constrained due to arsenic adsorption on iron oxides. In karstic aquifers, however, arsenic contamination may spread to further extensions mainly due to favorable hydrogeochemical conditions. In this study, we i) determined the spatial and temporal behavior of arsenic in water in an alluvial-karstic geological setting using field and literature data, ii) established whether a contaminated aquifer exists using field and literature piezometric data and geophysical analysis, iii) studied the local geology and associated arsenic contaminated water sources to specific aquifers, iv) revealed and modeled subsoil stratigraphy, and v) established the extent of arsenic exposure to the population.
View Article and Find Full Text PDFMobility of Arsenic (As) from metallurgical wastes in Matehuala, Mexico has been accounted for ultra-high concentration of As in water (4.8-158mg/L) that is used for recreational purposes as well as cultivation of maize. In this study, we (i) measured As concentrations in soils irrigated with this water, (ii) investigated the geochemical controls of available As, and (iii) measured bioaccumulation of As in maize.
View Article and Find Full Text PDFThe contamination of groundwater by heavy metal, originating either from natural soil sources or from anthropogenic sources is a matter of utmost concern to the public health. Remediation of contaminated groundwater is of highest priority since billions of people all over the world use it for drinking purpose. In this paper, thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes.
View Article and Find Full Text PDFAbout 100 million rural people in Asia are exposed to arsenic (As)-polluted drinking water and agricultural products. Total and inorganic arsenic (t-As and i-As) intake mainly depend on the quality of drinking and cooking waters, and amounts of seafood and rice consumed. The main problems occur in countries with poor water quality where the population depends on rice for their diet, and their t-As and i-As intake is high as a result of growing and cooking rice in contaminated water.
View Article and Find Full Text PDF