Publications by authors named "Bhaskar Dawane"

Background: Natural products with targeted bioactivity have gained major attention in the field of cancer research owing to emerging anti-cancer drug resistance and off target toxicities. Chloroxylon swietenia (Roxb.) DC is recognized as a folklore medicinal plant and has numerous therapeutic benefits in the folklore medicine system, however the anti-cancer potential of this plant and its mechanism of action is poorly understood.

View Article and Find Full Text PDF

Development of novel, safe and effective drug candidates combating the emerging drug resistance has remained a major focus in the mainstream of anti-tuberculosis research. Here, we inspired to design and synthesize series of new pyridin-4-yl-1,3,4-oxadiazol-2-yl-thio-ethylidene-hydrazinecarbothioamide derivatives as potential anti-tubercular agents. The anti-tubercular bioactive assay demonstrated that the synthesized compounds exhibit potent anti-tubercular activity (MIC = 3.

View Article and Find Full Text PDF

Searching novel, safe and effective anti-inflammatory agents has remained an evolving research enquiry in the mainstream of inflammatory disorders. In the present investigation series of thiazoles bearing pyrazole as a possible pharmacophore were synthesized and assessed for their anti inflammatory activity using in vitro and in vivo methods. In order to decipher the possible anti-inflammatory mechanism of action of the synthesized compounds, cyclooxygenase I and II (COX-I and COX-II) inhibition assays were also carried out.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring the synthesis of metal nanoparticles, specifically curcumin-capped copper nanoparticles (CU-NPs), to enhance cancer treatment and drug delivery.
  • The study evaluated CU-NPs for their effects on angiogenesis, cell proliferation, and migration in the MDA-MB-231 breast cancer cell line, using assays like the chorioallantoic membrane (CAM) model and the MTT cytotoxicity assay.
  • Results indicated that CU-NPs did not show significant antiangiogenic or anticancer activity compared to native curcumin, and the study discusses potential reasons based on nanoparticle synthesis methods.
View Article and Find Full Text PDF

Aldose reductase is the key enzyme of polypol pathway leading to accumulation of sorbitol. Sorbitol does not diffuse across the cell membranes easily and therefore accumulates within the cell, causing osmotic damage which leads to retinopathy (cataractogenesis), neuropathy and other diabetic complications. Currently, aldose reductase inhibitors like epalrestat, ranirestat and fidarestat are used for the amelioration of diabetic complications.

View Article and Find Full Text PDF

Xanthine oxidase (XO) generates superoxide anions and H(2)O(2) for the self-defence system of organism. Abnormal production of this superoxide's (reactive oxygen species) is responsible for a number of complications including inflammation, metabolic disorder, cellular aging, reperfusion damage, atherosclerosis and carcinogenesis. Series of novel trisubstituted thiophenyl-1-thiazolyl-2-pyrazoline libraries are synthesized containing 2,5-dichloro thiophene, 5-chloro-2-(benzylthio) thiophene and 5-chlorothiophene-2-sulphonamide, from chalcones in PEG-400 as green solvent.

View Article and Find Full Text PDF

The DNA molecule is a target for plethora of anticancer and antiviral drugs that forms covalent and non-covalent adducts with major or minor groove of DNA. In present study we synthesized series of novel Pyrazolo [1,5-a]pyrimidine derivatives. The newly synthesized compounds were characterized by elemental analysis, IR, (1)H NMR, and mass spectral data.

View Article and Find Full Text PDF

Xanthine oxidase (XO) is a complex metalloflavoprotein, overproduction of which usually leads to a pathological condition called Gout. XO inhibitors may prove to be promising antigout agents. Present investigation describes synthesis, characterization and evaluation of 26 thiazolo-pyrazolyl derivatives V(a-z) for XO inhibitory and free radical scavenging activities.

View Article and Find Full Text PDF

Pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidin-4-one derivatives have been prepared by cyclocondensation of ethyl 2-cyano-3,3-bis(methylthio)prop-2-enoate with 2-amino-4-(substitutedphenyl)thiazole to give 3-cyano-2-methylthio-4-oxo-4H-6-(substitutedphenyl)thiazolo[3,2-a]pyrimidin (2a-j) and further reacting with hydrazine hydrate to yield the target compounds (3a-j). The chemical structure of the compounds was confirmed by IR and (1)H NMR spectral data. All the compounds of the series have been screened for their antibacterial and antifungal activity studies.

View Article and Find Full Text PDF

Xanthine oxidase (XO) is responsible for the pathological condition called gout. Inhibition of XO activity by various pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidine-4-one derivatives was assessed and compared with the standard inhibitor allopurinol. Out of 10 synthesized compounds, two compounds, viz.

View Article and Find Full Text PDF

A simple and convenient route is described for the synthesis of novel hetero 1,3-diaryl-2-propen-1-ones (chalcones) by using recyclable PEG-400 as an alternative reaction solvent. The reaction is clean with excellent yield, shorter reaction time and reduces the use of volatile organic compounds (VOCs). All the synthesized compounds were evaluated for their antimicrobial activities against several pathogenic representatives.

View Article and Find Full Text PDF

Several 1-(4-(4'-chlorophenyl)-2-thiazolyl)-3-aryl-5-(2-butyl-4-chloro-1H-imidazol-5yl)-2-pyrazoline derivatives were prepared by the base catalyzed treatment of appropriate chalcones with 4-(4'-chlorophenyl)-2-hydrazino-thiazole in poly (ethylene glycol) (PEG-400) as an alternative reaction solvent. All the synthesized compounds were tested for their antimicrobial activities against Escherichia coli (MTCC 2939), Salmonella typhi (MTCC 98), Staphylococcus aureus (MTCC 96), Bacillus subtilis (MTCC 441), Aspergillus niger (MTCC 281), Trichoderma viridae (MTCC 167), Penicillium chrysogenum (MTCC 160), Fusarium moniliforme (MTCC 156) and Candida albicans (MTCC 183). Most of the compounds showed potent antibacterial and antifungal activity.

View Article and Find Full Text PDF