Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical characteristics is still going strong, where the goal of improving their energy density to match that of batteries by increasing their specific capacitance and raising their working voltage while maintaining high power capability and cutting the cost of production.
View Article and Find Full Text PDFWe report the effect of incorporating functionalized graphene oxide (terephthalic acid functionalized GO; GO--TPA) on the thermal and mechanical properties of Hytrel (HTL; a thermoplastic elastomeric polymer). Initially, the synthesis of GO--TPA was performed chemical methods and subsequently characterized using various spectroscopic and imaging techniques. The melt mixing technique was executed in preparing the nanocomposites of HTL/GO and HTL/GO--TPA.
View Article and Find Full Text PDFHerein, we report a robust approach for the selective covalent functionalization of graphene oxide (GO) with 4-hydroxybenzoic acid (HBA) for developing polymeric nanocomposites based on liquid crystalline polymers (LCPs). The functionalization of GO with HBA was confirmed by Raman spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD) spectroscopy. The surface morphology of GO and functionalized GO (FGO) was studied using field emission scanning electron microscopy (FE-SEM).
View Article and Find Full Text PDFWe report the bulk phase synthesis of graphene sheets using waste plastic (WP) as a precursor following a modified pyrolysis approach. Furthermore, the low and high mass loading of vanadium pentaoxide was performed on graphene sheets in 1 : 10 and 1 : 1 ratios, respectively. Advanced characterization techniques such as Raman spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA) analysis, and SEM imaging were used to confirm the synthesis of graphene.
View Article and Find Full Text PDFHerein, we report the first time application of waste plastic derived 3D graphene nanosheets (GNs) for hole transport material (HTM) free perovskite solar cells (PSCs), where 3D GNs have been employed as an electrode dopant material in monolithic carbon electrode based mesoscopic PSCs. Waste plastics were upcycled into high-quality 3D GNs by using two-step pyrolysis processes, where, a nickel (99.99%) metal mesh was taken as the catalytic and degradation template to get an acid free route for the synthesis of 3D GNs.
View Article and Find Full Text PDF