Publications by authors named "Bharti Bisht"

Lung cancer is the primary cause of mortality in the United States and around the globe. Therapeutic options for lung cancer treatment include surgery, radiation therapy, chemotherapy, and targeted drug therapy. Medical management is often associated with the development of treatment resistance leading to relapse.

View Article and Find Full Text PDF

Three major approaches of cancer therapy can be enunciated as delivery of biotherapeutics, tumor image analysis, and immunotherapy. Liposomes, artificial fat bubbles, are long known for their capacity to encapsulate a diverse range of bioactive molecules and release the payload in a sustained, stimuli-responsive manner. They have already been widely explored as a delivery vehicle for therapeutic drugs as well as imaging agents.

View Article and Find Full Text PDF

WNT/β-catenin signaling orchestrates various physiological processes, including embryonic development, growth, tissue homeostasis, and regeneration. Abnormal WNT/β-catenin signaling is associated with various cancers and its inhibition has shown effective antitumor responses. In this review, we discuss the pathway, potential targets for the development of WNT/β-catenin inhibitors, available inhibitors, and their specific molecular interactions with the target proteins.

View Article and Find Full Text PDF

The need for bone grafts is tremendous, and that leads to the use of autograft, allograft, and bone graft substitutes. The biology of the bone is quite complex regarding cellular composition and architecture, hence developing a mineralized connective tissue graft is challenging. Traditionally used bone graft substitutes including metals, biomaterial coated metals and biodegradable scaffolds, suffer from persistent limitations.

View Article and Find Full Text PDF

Our understanding of dynamic interactions between airway basal stem cells (ABSCs) and their signaling niches in homeostasis, injury, and aging remains elusive. Using transgenic mice and pharmacologic studies, we found that Wnt/β-catenin within ABSCs was essential for proliferation post-injury in vivo. ABSC-derived Wnt ligand production was dispensable for epithelial proliferation.

View Article and Find Full Text PDF

Oncogenic KRAS mutations are frequently found in non-small cell lung carcinoma (NSCLC) and cause constitutive activation of the MEK-ERK pathway. Many cancer types have been shown to overexpress PD-L1 to escape immune surveillance. FRA1 is a MEK/ERK-dependent oncogenic transcription factor and a member of the AP-1 transcriptional factor superfamily.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found that a specific form of β-catenin (p-β-catenin) is linked to squamous lung cancer development, leading to changes in airway stem cells.
  • They created a model showing that enhanced Wnt/β-catenin signaling causes abnormal cell growth and loss of ciliated cell function, resembling early stages of cancer.
  • A screening for drugs identified WIC1, which inhibits this signaling pathway and helps restore normal cell differentiation, suggesting it could be useful for repairing airway damage in medical applications.
View Article and Find Full Text PDF

The human quest to master the anatomy and physiology of living systems started as early as 1600 BC, with documents from the Greeks, Indians, and Romans presenting the earliest systematic studies and advances. Following the fall of the Roman Empire, the progress slowed until the Renaissance renewed scientific interest in anatomy and physiology, ushering in an era of spectacular advances. Alongside the discoveries of modern science, innovations in media such as printing, photography and color reproduction, improved the accuracy of communicating science.

View Article and Find Full Text PDF

The Food and Drug Administration-approved clinical dose (1.5 mg/mL) of bone morphogenetic protein-2 (BMP2) has been reported to induce significant adverse effects, including cyst-like adipose-infiltrated abnormal bone formation. These undesirable complications occur because of increased adipogenesis, at the expense of osteogenesis, through BMP2-mediated increases in the master regulatory gene for adipogenesis, peroxisome proliferator-activated receptor-γ (PPARγ).

View Article and Find Full Text PDF

Airways are exposed to myriad environmental and damaging agents such as reactive oxygen species (ROS), which also have physiological roles as signaling molecules that regulate stem cell function. However, the functional significance of both steady and dynamically changing ROS levels in different stem cell populations, as well as downstream mechanisms that integrate ROS sensing into decisions regarding stem cell homeostasis, are unclear. Here, we show in mouse and human airway basal stem cells (ABSCs) that intracellular flux from low to moderate ROS levels is required for stem cell self-renewal and proliferation.

View Article and Find Full Text PDF

Both basal and submucosal gland (SMG) duct stem cells of the airway epithelium are capable of sphere formation in the in vitro sphere assay, although the efficiency at which this occurs is very low. We sought to improve this efficiency of sphere formation by identifying subpopulations of airway basal stem cells (ABSC) and SMG duct cells based on their aldehyde dehydrogenase (ALDH) activity. ALDH(hi) ABSCs and SMG duct cells were highly enriched for the population of cells that could make spheres, while the co-culture of ALDH(hi) differentiated cells with the ALDH(hi) ABSCs increased their sphere-forming efficiency.

View Article and Find Full Text PDF

Basal cells and submucosal gland (SMG) duct cells have been isolated and shown to be stem/progenitor cell populations for the murine airway epithelium. However, methods for the isolation of basal and SMG duct cells from human airways have not been defined. We used an optimized two-step enzyme digestion protocol to strip the surface epithelium from tracheal specimens separate from SMG cells, and we then sorted the basal and duct stem/progenitors using fluorescence-activated cell sorting.

View Article and Find Full Text PDF

Focal adhesion kinase (FAK), a non-receptor protein kinase, is known to be a phosphatidyl inositol 3-kinase (PI3K) pathway activator and thus widely implicated in regulation of cell survival and cancer. In recent years FAK has also been strongly implicated as a crucial regulator of insulin resistance in peripheral tissues like skeletal muscle and liver, where decrease in its expression/activity has been shown to lead to insulin resistance. However, in the present study we report an altogether different role of FAK in regulation of insulin/PI3K signaling in neurons, the post-mitotic cells.

View Article and Find Full Text PDF

The airway epithelium is in direct contact with the environment and therefore constantly at risk for injury. Basal cells (BCs) have been found to repair the surface epithelium (SE), but the contribution of other stem cell populations to airway epithelial repair has not been identified. We demonstrated that airway submucosal gland (SMG) duct cells, in addition to BCs, survived severe hypoxic-ischemic injury.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. Pharmacological treatments presently available can slow down the progression of symptoms but can not cure the disease. Currently there is widening recognition that AD is closely associated with impaired insulin signaling and glucose metabolism in brain, suggesting it to be a brain-specific form of diabetes and so also termed as "type 3 diabetes".

View Article and Find Full Text PDF

Background: Focal Adhesion Kinase (FAK) is recently reported to regulate insulin resistance by regulating glucose uptake in C2C12 skeletal muscle cells. However, the underlying mechanism for FAK-mediated glucose transporter-4 translocation (Glut-4), responsible for glucose uptake, remains unknown. Recently actin remodeling was reported to be essential for Glut-4 translocation.

View Article and Find Full Text PDF

Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, has recently been implicated in the regulation of insulin resistance in vitro. However, its in vivo validation has not been attempted due to lethality of FAK knockout. Hence, to ascertain the role of FAK in the development of insulin resistance in vivo, we have down-regulated FAK expression by delivering FAK-specific small interfering RNA (siRNA) in mice using hydrodynamic tail vein injection.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: