Publications by authors named "Bhart-Anjan Bhullar"

Article Synopsis
  • The trigeminus nerve (cranial nerve V) plays a vital role in transmitting facial sensory information, with its branches affecting sensory receptors in the face.
  • This study examined the morphology of maxillary and mandibular canals in both modern and fossil species to understand their importance in the sensory biology of synapsids.
  • Results revealed that synapsids evolved from complex, branched canal systems for enhanced tactile sensitivity to simpler canal structures, indicating a shift in tactile functions over time.
View Article and Find Full Text PDF

Since Hampé's classic developmental experiments in the mid-twentieth century, the reduced avian fibula has sparked sustained curiosity. The fibula transformed throughout dinosaur evolution from a columnar structure into its splint-like avian form, a change long thought to be of little biomechanical consequence. Here we integrated comparative three-dimensional kinematic analyses with transitional morphologies from the fossil record to refute this assumption and show that the reduced fibula serves a crucial function in enabling extreme knee long-axis rotation (LAR).

View Article and Find Full Text PDF

Resolving the phylogenetic relationships of early amniotes, in particular stem reptiles, remains a difficult problem. Three-dimensional morphological analysis of well-preserved stem-reptile specimens can reveal important anatomical data and clarify regions of phylogeny. Here, we present the first thorough description of the unusual early Permian stem reptile Bolosaurus major, including the first comprehensive description of a bolosaurid braincase.

View Article and Find Full Text PDF

Our knowledge of vertebrate functional evolution depends on inferences about joint function in extinct taxa. Without rigorous criteria for evaluating joint articulation, however, such analyses risk misleading reconstructions of vertebrate animal motion. Here we propose an approach for synthesizing raycast-based measurements of 3-D articular overlap, symmetry, and congruence into a quantitative "articulation score" for any non-interpenetrating six-degree-of-freedom joint configuration.

View Article and Find Full Text PDF

Palaeognathae, the extant avian clade comprising the flightless ratites and flight-capable tinamous (Tinamidae), is the sister group to all other living birds, and recent phylogenetic studies illustrate that tinamous are phylogenetically nested within a paraphyletic assemblage of ratites. As the only extant palaeognaths that have retained the ability to fly, tinamous may provide key information on the nature of the flight apparatus of ancestral crown palaeognaths-and, in turn, crown birds-as well as insight into convergent modifications to the wing apparatus among extant ratite lineages. To reveal new information about the musculoskeletal anatomy of tinamous and facilitate development of computational biomechanical models of tinamou wing function, we generated a three-dimensional musculoskeletal model of the flight apparatus of the extant Andean tinamou (Nothoprocta pentlandii) using diffusible iodine-based contrast-enhanced computed tomography (diceCT).

View Article and Find Full Text PDF
Article Synopsis
  • New research presents previously unexamined specimens of a crucial fossil group in the dinosaur-bird transition, offering fresh insights into its postcranial morphology.
  • Findings include four nearly complete skeletons and isolated bones, revealing anatomy like muscle attachments and enhanced structural details essential for understanding their evolution.
  • Phylogenetic analysis based on the new data suggests there is significant morphological variation among specimens, which may indicate growth changes, and proposes new clade names to clarify the evolutionary relationships among early avian groups.
View Article and Find Full Text PDF

Squamata is the most diverse clade of terrestrial vertebrates. Although the origin of pan-squamates lies in the Triassic, the oldest undisputed members of extant clades known from nearly complete, uncrushed material come from the Cretaceous. Here, we describe three-dimensionally preserved partial skulls of two new crown lizards from the Late Jurassic of North America.

View Article and Find Full Text PDF

Significant evolutionary shifts in locomotor behaviour often involve comparatively subtle anatomical transitions. For dinosaurian and avian evolution, medial overhang of the proximal femur has been central to discussions. However, there is an apparent conflict with regard to the evolutionary origin of the dinosaurian femoral head, with neontological and palaeontological data suggesting seemingly incongruent hypotheses.

View Article and Find Full Text PDF

The rapid radiation and dispersal of crown reptiles following the end-Permian mass extinction characterizes the earliest phase of the Mesozoic. Phylogenetically, this early radiation is difficult to interpret, with polytomies near the crown node, long ghost lineages, and enigmatic origins for crown group clades. Better understanding of poorly known taxa from this time can aid in our understanding of this radiation and Permo-Triassic ecology.

View Article and Find Full Text PDF

Although evolvability of genes and traits may promote specialization during species diversification, how ecology subsequently restricts such variation remains unclear. Chemosensation requires animals to decipher a complex chemical background to locate fitness-related resources, and thus the underlying genomic architecture and morphology must cope with constant exposure to a changing odorant landscape; detecting adaptation amidst extensive chemosensory diversity is an open challenge. In phyllostomid bats, an ecologically diverse clade that evolved plant visiting from a presumed insectivorous ancestor, the evolution of novel food detection mechanisms is suggested to be a key innovation, as plant-visiting species rely strongly on olfaction, supplementarily using echolocation.

View Article and Find Full Text PDF

Living birds (Aves) have bodies substantially modified from the ancestral reptilian condition. The avian pelvis in particular experienced major changes during the transition from early archosaurs to living birds. This stepwise transformation is well documented by an excellent fossil record; however, the ontogenetic alterations that underly it are less well understood.

View Article and Find Full Text PDF

David . claim that vestibular shape does not reflect function and that we did not use phylogenetic inference methods in our primary analyses. We show that their claims are countered by comparative and direct experimental evidence from across Vertebrata and that their models are empirically unverified.

View Article and Find Full Text PDF

Secondary aquatic adaptations evolved independently more than 30 times from terrestrial vertebrate ancestors. For decades, non-avian dinosaurs were believed to be an exception to this pattern. Only a few species have been hypothesized to be partly or predominantly aquatic.

View Article and Find Full Text PDF

Limb muscles are remarkably complex and evolutionarily labile. Although their anatomy is of great interest for studies of the evolution of form and function, their homologies among major amniote clades have remained obscure. Studies of adult musculature are inconclusive owing to the highly derived morphology of modern amniote limbs but correspondences become increasingly evident earlier in ontogeny.

View Article and Find Full Text PDF

Chemosensation is the most ubiquitous sense in animals, enacted by the products of complex gene families that detect environmental chemical cues and larger-scale sensory structures that process these cues. While there is a general conception that olfactory receptor () genes evolve rapidly, the universality of this phenomenon across vertebrates, and its magnitude, are unclear. The supposed correlation between molecular rates of chemosensory evolution and phenotypic diversity of chemosensory systems is largely untested.

View Article and Find Full Text PDF

Reptiles, including birds, exhibit a range of behaviorally relevant adaptations that are reflected in changes to the structure of the inner ear. These adaptations include the capacity for flight and sensitivity to high-frequency sound. We used three-dimensional morphometric analyses of a large sample of extant and extinct reptiles to investigate inner ear correlates of locomotor ability and hearing acuity.

View Article and Find Full Text PDF

Reduced limbs and limblessness have evolved independently in many lizard clades. Scincidae exhibit a wide range of limb-reduced morphologies, but only some species have been used to study the embryology of limb reduction (e.g.

View Article and Find Full Text PDF

Evolutionary variation in ontogeny played a central role in the origin of the avian skull. However, its influence in subsequent bird evolution is largely unexplored. We assess the links between ontogenetic and evolutionary variation of skull morphology in Strisores (nightbirds).

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the cranial features of Anchisaurus, an early relative of sauropods, revealing a mix of ancestral and advanced characteristics through detailed digital analyses of juvenile and adult specimens.
  • Findings suggest that certain skull traits in sauropods developed later in their growth, hinting at a developmental shift that allowed for greater diversity in skull shape and feeding adaptations, coinciding with their evolution towards gigantic sizes.
View Article and Find Full Text PDF

Archosauria (birds, crocodilians and their extinct relatives) form a major part of terrestrial ecosystems today, with over 10 000 living species, and came to dominate the land for most of the Mesozoic (over 150 Myr) after radiating following the Permian-Triassic extinction. The archosaur skull has been essential to this diversification, itself diversified into myriad forms. The archosauriform from the Middle Triassic (Anisian) of South Africa has been of great interest since its initial description in 1913, because its anatomy shed light on the origins and early evolution of crown Archosauria and potentially approached that of the archosaur common ancestor.

View Article and Find Full Text PDF

Recent studies have demonstrated a mechanism of embryonic yolk processing in lizards, snakes and turtles that differs markedly from that of birds. In the avian pattern, cells that line the inside of the yolk sac take up products of yolk digestion and deliver nutrients into the vitelline circulation. In contrast, in squamates and turtles, proliferating endodermal cells invade and fill the yolk sac cavity, forming elongated strands of yolk-filled cells that surround small blood vessels.

View Article and Find Full Text PDF

The evolutionary radiation of birds has produced incredible morphological variation, including a huge range of skull form and function. Investigating how this variation arose with respect to non-avian dinosaurs is key to understanding how birds achieved their remarkable success after the Cretaceous-Paleogene extinction event. Using a high-dimensional geometric morphometric approach, we quantified the shape of the skull in unprecedented detail across 354 extant and 37 extinct avian and non-avian dinosaurs.

View Article and Find Full Text PDF

Background: The extremely derived body plan of turtles has sparked a great interest in studying their developmental biology. Here, we describe the embryonic development of the Stinkpot, or common musk turtle (Sternotherus odoratus), a small aquatic turtle from the family Kinosternidae.

Results: We identify 20 distinct developmental stages, some comparable to stages described by previous studies on other turtles and some in between these, improving the resolution of the generalities of turtle development.

View Article and Find Full Text PDF