Publications by authors named "Bharathi Karunakaran"

Forty-eight (48) drug products (DPs) containing amorphous solid dispersions (ASDs) have been approved by the U.S. Food and Drug Administration in the 12-year period between 2012 and 2023.

View Article and Find Full Text PDF

Collagen-based hydrogels have emerged as a highly promising platform for diverse applications in ophthalmology, spanning from drug delivery systems to biomedical interventions. This review explores the diverse sources of collagen, which give rise to different types of collagen protein. The critical isolation and purification steps are discussed, emphasizing their pivotal role in preparing collagen for biomedical use.

View Article and Find Full Text PDF

Nucleic acid therapeutics, specifically antisense oligonucleotides (ASOs), can effectively modulate gene expression and protein function, leading to long-lasting curative effects. The hydrophilic nature and large size of oligonucleotides present translational challenges, which have led to the exploration of various chemical modifications and delivery systems. The present review provides insights into the potential role of liposomes as a drug delivery system for ASOs.

View Article and Find Full Text PDF

Chitosan, a biocompatible and biodegradable polysaccharide derived from chitin, has surfaced as a material of promise for drug delivery and biomedical applications. Different chitin and chitosan extraction techniques can produce materials with unique properties, which can be further modified to enhance their bioactivities. Chitosan-based drug delivery systems have been developed for various routes of administration, including oral, ophthalmic, transdermal, nasal, and vaginal, allowing for targeted and sustained release of drugs.

View Article and Find Full Text PDF

Lipid-based vaccine delivery systems such as the conventional liposomes, virosomes, bilosomes, vesosomes, pH-fusogenic liposomes, transferosomes, immuno-liposomes, ethosomes, and lipid nanoparticles have gained a remarkable interest in vaccine delivery due to their ability to render antigens in vesicular structures, that in turn prevents its enzymatic degradation in vivo. The particulate form of lipid-based nanocarriers confers immunostimulatory potential, making them ideal antigen carriers. Facilitation in the uptake of antigen-loaded nanocarriers, by the antigen-presenting cells and its subsequent presentation through the major histocompatibility complex molecules, leads to the activation of a cascade of immune responses.

View Article and Find Full Text PDF