To probe how non-human primates (NHPs) decode temporal dynamic stimuli, we used a two-alternative forced choice task (2AFC), where the cue was dynamic: a movie snippet drawn from an animation that transforms one image into another. When the cue was drawn from either the beginning or end of the animation, thus heavily weighted towards one (the target) of both images (the choice pair), then primates performed at high levels of accuracy. For a subset of trials, however, the cue was ambiguous, drawn from the middle of the animation, containing information that could be associated to either image.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
Most brain-computer interface classification experiments from electrical potential recordings have been focused on the identification of classes of stimuli or behavior where the timing of experimental parameters is known or pre-designated. Real world experience, however, is spontaneous, and to this end we describe an experiment predicting the occurrence, timing, and types of visual stimuli perceived by a human subject from electrocorticographic recordings. All 300 of 300 presented stimuli were correctly detected, with a temporal precision of order 20 ms.
View Article and Find Full Text PDFNeural responses throughout the sensory system are affected by stimulus history. In the inferotemporal cortex (IT)--an area important for processing information about object shape--there is a substantially reduced response to the second presentation of an image. Understanding the mechanisms underlying repetition suppression may provide important insights into the circuitry that generates responses in IT.
View Article and Find Full Text PDFHow does the brain dynamically convert incoming sensory data into a representation useful for classification? Neurons in inferior temporal (IT) cortex are selective for complex visual stimuli, but their response dynamics during perceptual classification is not well understood. We studied IT dynamics in monkeys performing a classification task. The monkeys were shown visual stimuli that were morphed (interpolated) between pairs of familiar images.
View Article and Find Full Text PDFAmbiguous images are interpreted in the context of biases about what they might be; these biases and the behavioral consequences induced by them may influence the processing of images. In this report, we examine neural responses in inferotemporal cortex (IT) during the interpretation of ambiguous photographs created by morphing between two photographs. Monkeys classified different images as being one of two choices and learned to classify most of the samples correctly.
View Article and Find Full Text PDFAnterior inferotemporal cortex (aIT) contributes to the ability to discriminate and classify complex images. To determine whether and what proportion of single neurons in aIT cortex can yield enough information to classify complex images, we recorded from aIT neurons during the presentation of morphed photographic images in sessions in which monkeys classified images in a two alternative forced-choice--delayed-match-to-sample (2AFC-DMS) task or in sessions in which they performed a fixation task. The sample stimuli were chosen from a sequence in which one image was gradually morphed into another in a pair, while the original pair of images served as choices.
View Article and Find Full Text PDFInferotemporal (IT) cortex plays a critical role in the primate ability to perceive and discriminate between images, but the relationship between responses of single neurons and behavioral capacities is poorly understood. We studied this relationship by recording from IT neurons while monkeys performed a delayed-match-to-sample task with two images. On each day, two sample images were chosen to maximize the selectivity of the neuron and task difficulty was manipulated by varying sample duration and by masking the sample.
View Article and Find Full Text PDFPrimates have a remarkable ability to perceive, recognize, and discriminate among the plethora of people, places, and things that they see, and neural selectivity in the primate inferotemporal (IT) cortex is thought to underlie this ability. Here we investigated the relationship between neural response and perception by recording from IT neurons in monkeys while they viewed realistic images. We then compared the similarity of neural responses elicited by images to the quantitative similarity of the images.
View Article and Find Full Text PDF