Publications by authors named "Bharathi Gorantla"

Cancer-initiating cells comprise a heterogeneous population of undifferentiated cells with the capacity for self-renewal and high proliferative potential. We investigated the role of uPAR and cathepsin B in the maintenance of stem cell nature in glioma-initiating cells (GICs). Simultaneous knockdown of uPAR and cathepsin B significantly reduced the expression of CD133, Nestin, Sox2 and Bmi1 at the protein level and GLI1 and GLI2 at the messenger RNA level.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most aggressive brain cancer, and to date, no curative treatment has been developed. In this study, we report that miR-211, a microRNA predicted to target MMP-9, is suppressed in grade IV GBM specimens. Furthermore, we found that miR-211 suppression in GBM involves aberrant methylation-mediated epigenetic silencing of the miR-211 promoter.

View Article and Find Full Text PDF

Imatinib mesylate is the first tyrosine kinase inhibitor developed and approved for the treatment of chronic myeloid leukemia (CML). In the past few years development of resistance towards imatinib mesylate has been reported. To overcome this problem a series of phenyl amino pyrimidine derivatives have been designed, prepared and evaluated for anti-proliferative activity against the BCR‑ABL‑positive leukemia cell line K562.

View Article and Find Full Text PDF

Our previous studies showed that overexpression of secreted protein acidic and rich in cysteine (SPARC) induced autophagy-mediated apoptosis in PNET cells. In the present study, we attempted to elucidate the molecular mechanisms and signaling cascades associated with SPARC overexpression in combination with radiation therapy that eventually leads to autophagy-mediated apoptosis in neuroblastoma. SPARC expression in SK-N-AS and NB-1691 cells demonstrated the activation of caspase 3, cleavage of PARP and induction of apoptosis.

View Article and Find Full Text PDF

Receptor tyrosine kinases (RTK) and their ligands control critical biologic processes, such as cell proliferation, migration, and differentiation. Aberrant expression of these receptor kinases in tumor cells alters multiple downstream signaling cascades that ultimately drive the malignant phenotype by enhancing tumor cell proliferation, invasion, metastasis, and angiogenesis. As observed in human glioblastoma (hGBM) and other cancers, this dysregulation of RTK networks correlates with poor patient survival.

View Article and Find Full Text PDF
Article Synopsis
  • Advanced neuroblastoma has a poor prognosis and features high tumor vascularity, leading to the exploration of angiogenesis inhibitors like SPARC alongside existing treatments.* -
  • SPARC overexpression in neuroblastoma cells significantly decreases endothelial cell proliferation, tube formation, and expression of pro-angiogenic factors by inhibiting the Notch signaling pathway.* -
  • In both in vitro and in vivo studies, SPARC-induced endothelial cell apoptosis was observed, highlighting its potential as a therapeutic target to inhibit tumor-related angiogenesis.*
View Article and Find Full Text PDF

Glioblastomas present as diffuse tumors with invasion into normal brain tissue and frequently recur or progress after radiation as focal masses because of glioma-initiating cells. The role of the urokinase-type plasminogen activator receptor (uPAR) and cathepsin B in stem-like phenotype has been extensively studied in several solid tumors. In the present study, we demonstrated that selection of glioma-initiating cells using CD133 expression leads to a specific enrichment of CD133(+) cells in both U87 and 4910 cells.

View Article and Find Full Text PDF

Secreted protein acidic and rich in cysteine (SPARC) is also known as BM-40 or Osteonectin, a multi-functional protein modulating cell-cell and cell-matrix interactions. In cancer, SPARC is not only linked with a highly aggressive phenotype, but it also acts as a tumor suppressor. In the present study, we sought to characterize the function of SPARC and its role in sensitizing neuroblastoma cells to radio-therapy.

View Article and Find Full Text PDF

Urokinase plasminogen activator receptor (uPAR) is known to promote invasion, migration, and metastasis in cancer cells. In this report, we showed that ionizing radiation (IR)-induced uPAR has a role in WNT-β-catenin signaling and mediates induction of cancer stem cell (CSC)-like properties in medulloblastoma cell lines UW228 and D283. We observed that IR induced the expression of uPAR and CSC markers, such as Musashi-1 and CD44, and activated WNT-7a-β-catenin signaling molecules.

View Article and Find Full Text PDF

Glioma is a highly complex brain tumor characterized by the dysregulation of proteins and genes that leads to tumor metastasis. Cathepsin B and uPAR are overexpressed in gliomas and they are postulated to play central roles in glioma metastasis. In this study, efficient downregulation of cathepsin B and uPAR by siRNA treatments significantly reduced glioma cell adhesion to laminin as compared to vitronectin, fibronectin, or collagen I in U251 and 4910 glioma cell lines.

View Article and Find Full Text PDF

Breast cancer is the second most frequently diagnosed tumor in women. Overexpression of human epidermal growth factor receptors (EGFRs) represents a biological subclass of breast cancer with distinct molecular alterations, clinical behavior and response to systemic therapy. In this study, we describe a novel compound (NRC-AN-019), which has better antitumor activity than Lapatinib.

View Article and Find Full Text PDF

Background: Abrogation of apoptosis for prolonged cell survival is essential in cancer progression. In our previous studies, we showed the MMP-2 downregulation induced apoptosis in cancer cell lines. Here, we attempt to investigate the exact molecular mechanism of how MMP-2 depletion leads to apoptosis in glioma xenograft cell lines.

View Article and Find Full Text PDF

Despite existing chemotherapy and surgical resection strategies, pancreatic cancer is one of the major causes of mortality in the United States with a 5-year mean survival rate of less than 5%. The activation of the urokinase-type plasminogen activator receptor-urokinase-type plasminogen activator (uPAR-uPA) system in the development of pancreatic ductal adenocarcinoma has been well established. In the present study, we used 2 pancreatic cancer cell lines, MIA PaCa-2 and PANC-1 to show the effects of uPAR and uPA downregulation.

View Article and Find Full Text PDF

A major obstacle for the effective treatment of cancer is the invasive capacity of the tumor cells. Previous studies have shown the capability of mesenchymal stem cells (MSC) to target these disseminated tumor cells and to serve as therapeutic delivery vehicles. However, the molecular mechanisms that would enhance the migration of MSCs toward tumor areas are not well understood.

View Article and Find Full Text PDF

Despite advances in clinical therapies and technologies, the prognosis for patients with malignant glioma is poor. Neural stem cells (NSCs) have a chemotactic tropism toward glioma cells. The use of NSCs as carriers of therapeutic agents for gliomas is currently being explored.

View Article and Find Full Text PDF

We have previously demonstrated the multipotent nature of human umbilical cord blood stem cells (hUCB). In this study, we have attempted to show the use of hUCB in glioma therapy. We used hUCB enriched in CD44 and CD133 cells for our studies and observed that glioma cells co-cultured with hUCB undergo apoptosis.

View Article and Find Full Text PDF

Stereospecific radiation treatment offers a distinct opportunity for temporal and spatial regulation of gene expression at tumor sites by means of inducible promoters. To this end, a plasmid, pCArG-U2, was constructed by incorporating nine CArG elements (in tandem) of EGR1 gene upstream to uPA and uPAR siRNA oligonucleotides in a pCi-neo vector. Radiation-induced siRNA expression was detected in a meningioma cell line (IOMM-Lee).

View Article and Find Full Text PDF

Histone acetylation plays an important role in chromatin remodeling and gene expression. The molecular mechanisms involved in differential regulation of urokinase plasminogen activator (uPA) gene expression are not fully understood. In this study, we investigated whether histone deacetylation was involved in repression of uPA expression in human cancer cells.

View Article and Find Full Text PDF