In this study, garlic-oil-combined cellulose fibers were prepared by using Borassus flabellifer (Asian Palmyra palm) to enhance the post-harvest shelf life of tomatoes. The physicochemical properties of the prepared cellulose fibers were characterized by using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM). The B.
View Article and Find Full Text PDFAminothiazoles are the important class of chemical groups which have proven their broad range of biological activities. A novel aminothiazole (21MAT) was quantified in analytical solutions using a high-performance liquid chromatography (HPLC) approach that was developed and partially validated for the analysis of in vitro experimental samples. An isocratic elution on reverse phase Phenomenex Luna C (50 mm × 4.
View Article and Find Full Text PDFThe increase in antimicrobial resistance (AMR) in microorganisms is a significant global health concern. Various factors contribute to AMR, including alterations in cell membrane permeability, increased efflux pump activity, enzymatic modification or inactivation of antibiotics, target site changes, alternative metabolic pathways, and biofilm formation. Marine environments, with their extensive biodiversity, provide a valuable source of natural products with a wide range of biological activities.
View Article and Find Full Text PDFIntroduction Acute lymphoblastic leukemia (ALL) constitutes a significant portion of pediatric malignancies, with central nervous system (CNS) relapse posing a considerable threat to patient outcomes. While cranial radiation therapy (CRT) has been utilized to mitigate CNS relapse, it is associated with neurocognitive (NC) side effects. This study explores the feasibility and safety of using volumetric arc therapy (VMAT) with hippocampal sparing (HS) during cranial radiation therapy for ALL patients, aiming to reduce these side effects.
View Article and Find Full Text PDFThe present study reports on the preparation of a cellulose fiber (CF) composite from , combined with copper oxide nanoparticles (DL@CF/CuO), to prolong the shelf life of tomatoes after harvest. The isolated cellulose fiber material was comprehensively characterized using XRD, FTIR, and FE-SEM analyses. The DLCF and DL@CF/CuO nanoparticles exhibited crystalline cellulose, as indicated by the XRD investigation.
View Article and Find Full Text PDFThe release of industrial wastewater has adverse effects on both aquatic ecosystems and the environment. Discharging untreated organic dyes into aquatic environments significantly amplifies pollution levels in these ecosystems. Ensuring the appropriate disposal of organic colorants and their derivatives before introducing them into wastewater streams is essential to prevent environmental contamination.
View Article and Find Full Text PDFThe oncogenic and genetic properties of anthracene, a member of the polycyclic aromatic hydrocarbons (PAHs) family, pose a significant health threat to humans. This study aims to investigate the photocatalytic decomposition of anthracene under various conditions, such as different concentrations of PAHs, varying amounts of NiO (nickel oxide) nanoparticles, and different pH levels under ultraviolet light and sunlight. The synthesized NiO nanoparticles showed surface plasma resonance at 230 and 360 nm, while XRD and SEM analysis confirmed the nanoparticles were cubic crystalline in structure with sizes ranging between 37 and 126 nm.
View Article and Find Full Text PDFThe present work describes the fabrication of the quaternary Zn-Cd-Sn-S nanostructure and its use in photocatalytic remediation of the biological contaminant pyrene from water resources. Nanostructures fabricated were characterized by XRD, UV-DRS, FTIR, DLS, EDX, and SEM. In addition, an agar well diffusion test was conducted to determine the antimicrobial activity.
View Article and Find Full Text PDFBenzopyrene (BaP) stands as a potent polycyclic aromatic hydrocarbon (PAH) molecule, boasting five fused aromatic rings, making its way into the human food chain through soil contamination. The persistent environmental presence of PAHs in soil, attributed to industrial exposure, is primarily due to their low molecular weight and hydrophobic nature. To preemptively address the entry of BaP into the food chain, the application of nanocomposites was identified as an effective remediation strategy.
View Article and Find Full Text PDFRegarding food security and waste reduction, preserving fruits and vegetables is a vital problem. This comprehensive study examines the innovative potential of coatings and packaging made of nanocellulose to extend the shelf life of perishable foods. The distinctive merits of nanocellulose, which is prepared from renewable sources, include exceptional gas barrier performance, moisture retention, and antibacterial activity.
View Article and Find Full Text PDFThe removal of color-causing compounds from wastewater is a significant challenge that industries encounter due to their toxic, carcinogenic, and harmful properties. Despite the extensive research and development of various techniques with the objective of effectively degrading color pollutants, the challenge still persists. This paper introduces a simple technique for producing iron oxide nanoparticles (FeO NPs) using orange fruit peel for sustainable dye degradation in aqueous environment.
View Article and Find Full Text PDFPolyaromatic hydrocarbons (PAHs) are life-threatening organic pollutants that severely threaten ecosystems worldwide due to their poisonous qualities, cancer-causing properties, and mutation-causing qualities. Water and soil together form a critical component of the ecosystem that supports all life. Due to the pollutants that are being disposed of in them, their characteristics have changed, and their toxicity has increased.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2024
Microbial biofilms are protected surface-attached communities of bacteria or fungi with high drug tolerance that typically cause persistent infections. Smart drug carriers are being explored as a promising platform of antimicrobials to address their recalcitrance to antibiotic agents and minimize the side effects of current therapies. In this study, soy lecithin liposomes loaded with lauric acid (LA) and myristoleic acid (MA) were formulated using an emulsification method, and their antibiofilm properties were evaluated.
View Article and Find Full Text PDFPhenanthrene is a persistent organic pollutant released by numerous industries. The purpose of the study is to construct a batch reactor for phenanthrene degradation using a bimetallic (BM) ZnS-SnS nanoparticle as a photocatalyst. ZnS-SnS BM NPs were used as a photocatalyst, employed from precursors Zinc acetate dihydrate and tin (II) chloride dihydrate, with crystalline cubic-shaped particle sizes.
View Article and Find Full Text PDFThe objective of the present study is to synthesize g-C3N4-Ni nanocomposites composed of graphitic carbon nitride and magnetic nickel nanoparticles for benzopyrene degradation, which is one of the most potent polycyclic aromatic hydrocarbons (PAH) molecules. The concocted g-CN-Ni nanocomposites contained confined nanospheres with a mean particle dimension of 22 nm. Batch adsorption studies revealed that a rise in adsorbent dosage elevates benzopyrene degradation percentage in both water and soil samples with respect to time.
View Article and Find Full Text PDFDiagnosing Intracranial Hemorrhage (ICH) at an early stage is difficult since it affects the blood vessels in the brain, often resulting in death. We propose an ensemble of Convolutional Neural Networks (CNNs) combining Squeeze and Excitation-based Residual Networks with the next dimension (SE-ResNeXT) and Long Short-Term Memory (LSTM) Networks in order to address this issue. This research work primarily used data from the Radiological Society of North America (RSNA) brain CT hemorrhage challenge dataset and the CQ500 dataset.
View Article and Find Full Text PDFThe synthesis of polymer-encapsulated metal nanoparticles is a growing field of area due to their long-term uses in the development of new technologies. The present study describes the synthesis of chitosan/silver nanocomposite using kaempferol for anticancer and bactericidal activity. The formation of Kf-CS/Ag nanocomposite was confirmed by the development of a brown color and UV-absorbance around 438 nm.
View Article and Find Full Text PDFIn the treatment of bacterial contamination, the problem of multi-drug resistance is becoming an increasingly pressing concern. Nanotechnology advancements enable the preparation of metal nanoparticles that can be assembled into complex systems to control bacterial and tumor cell growth. The current work investigates the green production of chitosan functionalized silver nanoparticles (CS/Ag NPs) using and their inhibition efficacy against bacterial pathogens and lung cancer cells (A549).
View Article and Find Full Text PDFChitosan functionalization is a growing field of interest to enhance the unique characteristics of metal oxide nanoparticles. In this study, a facile synthesis method has been used to develop a gallotannin loaded chitosan/zinc oxide (CS/ZnO) nanocomposite. Initially, white color formation confirmed the formation, and physico-chemical natures of the prepared nanocomposite were examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFThe past couple of decades in particular have seen a rapid increase in the prevalence of type 2 diabetes mellitus (T2DM), a debilitating metabolic disorder characterised by insulin resistance. The insufficient efficacy of current management strategies for insulin resistance calls for additional therapeutic options. The preponderance of evidence suggests potential beneficial effects of curcumin on insulin resistance, while modern science provides a scientific basis for its potential applications against the disease.
View Article and Find Full Text PDFThe industrial discharge of dye pollutant contaminated wastewater is the major cause of water and soil pollution. Photocatalysis is a promising and green remediation technology, which has received widespread attention in the remediation of hazardous dyes from aqueous environment and convert them into harmless compounds. Herein, we report the synthesis of chitosan (CS) functionalized bismuth oxychloride/zinc oxide (BiOCl/ZnO) nanocomposite by a modified hydrothermal route.
View Article and Find Full Text PDFThe coloured effluents produced from different industries, such as textile, plastics, printing, cosmetics, leather and paper, are extremely toxic and a tremendous threat to the aquatic organisms and human beings. The removal of coloured dye pollutants from the aqueous environment is a great challenge and a pressing task. The growing demand for low-cost and efficient treatment approaches has given rise to alternative and eco-friendly methods, such as biodegradation and microbial remediation.
View Article and Find Full Text PDFSpinal cord injury is a devastating condition that is critically challenging and progressive, needing immediate medical attention due to its complex pathophysiology and affecting the social status and economic burden. Stem cell therapy has been the emerging therapeutic trend to treat various diseases for decades. Mesenchymal stem cells pose more advantages over other stem cells in immune-modulation, immune evasiveness, self-renewal, multipotency, etc.
View Article and Find Full Text PDFIn this report, chitosan/zinc oxide (CS/ZnO) nanocomposite was synthesized using Sida acuta and assessed their antibacterial and photocatalytic properties. The formation of CS/ZnO nanocomposite was preliminary confirmed by colour change and UV-visible spectroscopy. The crystalline peaks related to CS and ZnO in CS/ZnO nanocomposite were demonstrated by XRD.
View Article and Find Full Text PDF