Publications by authors named "Bharat Wagh"

The liver is an ideal target for nucleic acid therapeutic applications (i.e., siRNA, gene therapy, and genome editing) due to its ability to secrete proteins into the blood.

View Article and Find Full Text PDF

Novel sources of antibiotics are needed to address the serious threat of bacterial resistance. Accordingly, we have launched a structure-based drug design program featuring a desmethylation strategy wherein methyl groups have been replaced with hydrogens. Herein we report the total synthesis, molecular modeling, and biological evaluation of 4-desmethyl telithromycin (6), a novel desmethyl analogue of the third-generation ketolide antibiotic telithromycin (2) and our final analogue in this series.

View Article and Find Full Text PDF

Antibiotic-resistant bacteria are emerging at an alarming rate in both hospital and community settings. Motivated by this issue, we have prepared desmethyl (i.e.

View Article and Find Full Text PDF

There is an urgent need for novel sources of antibiotics to address the incessant and inevitable onset of bacterial resistance. To this end, we have initiated a structure-based drug design program that features a desmethylation strategy (i.e.

View Article and Find Full Text PDF

Novel sources of antibiotics are required to address the serious problem of antibiotic resistance. Telithromycin (2) is a third-generation macrolide antibiotic prepared from erythromycin (1) and used clinically since 2004. Herein we report the details of our efforts that ultimately led to the total synthesis of (-)-4,8,10-tridesmethyl telithromycin (3) wherein methyl groups have been replaced with hydrogens.

View Article and Find Full Text PDF

There is an urgent need to discover new drugs to address the pressing problem of antibiotic-resistance. Macrolide antibiotics such as erythromycin (1) are safe, broad-spectrum antibiotics used in the clinic since 1954. Herein we report the synthesis and evaluation of 4,8,10-tridesmethyl telithromycin (3), a novel desmethyl analogue of the 3rd-generation drug telithromycin (2), which is a semisynthetic derivative of 1.

View Article and Find Full Text PDF