Publications by authors named "Bharat Ramasubramanian Iyer"

Transmembrane β-barrel scaffolds found in outer membrane proteins are formed and stabilized by a defined pattern of interstrand intraprotein H-bonds, in hydrophobic lipid bilayers. Introducing the conformationally constrained proline in β-barrels can cause significant destabilization of these structural regions that require H-bonding, with proline additionally acting as a secondary structure breaker. Membrane protein β-barrels are therefore expected to show poor tolerance to the presence of a transmembrane proline.

View Article and Find Full Text PDF

The naturally occurring amino acid cysteine has often been implicated with a crucial role in maintaining protein structure and stability. An intriguing duality in the intrinsic hydrophobicity of the cysteine side chain is that it exhibits both polar as well as hydrophobic characteristics. Here, we have utilized a cysteine-scanning mutational strategy on the transmembrane β-barrel PagP to examine the membrane depth-dependent energetic contribution of the free cysteine side chain (thiolate) versus the parent residue at an experimental pH of 9.

View Article and Find Full Text PDF

The ability of histidine to participate in a wide range of stabilizing polar interactions preferentially populates this residue in functionally important sites of proteins. Histidine possesses an amphiphilic and electrostatic nature that is essential for amino acids residing at membrane interfaces. However, the frequency of occurrence of histidine at membrane interfaces, particularly transmembrane β-barrels, is lower than those of other aromatic residues.

View Article and Find Full Text PDF

The free energy of water-to-interface amino acid partitioning is a major contributing factor in membrane protein folding and stability. The interface residues at the C terminus of transmembrane β-barrels form the β-signal motif required for assisted β-barrel assembly but are believed to be less important for β-barrel assembly Here, we experimentally measured the thermodynamic contribution of all 20 amino acids at the β-signal motif to the unassisted folding of the model β-barrel protein PagP. We obtained the partitioning free energy for all 20 amino acids at the lipid-facing interface (ΔΔ) and the protein-facing interface (ΔΔ) residues and found that hydrophobic amino acids are most favorably transferred to the lipid-facing interface, whereas charged and polar groups display the highest partitioning energy.

View Article and Find Full Text PDF

The outer membrane enzyme PagP is indispensable for lipid A palmitoylation in Gram-negative bacteria and has been implicated in resistance to host immune defenses. PagP possesses an unusual structure for an integral membrane protein, with a highly dynamic barrel domain that is tilted with respect to the membrane normal. In addition, it contains an N-terminal amphipathic helix.

View Article and Find Full Text PDF

PagP is an eight-stranded transmembrane β-barrel enzyme indispensable for lipid A palmitoylation in Gram-negative bacteria. The severity of infection by pathogens, including Salmonella, Legionella, and Bordetella, and resistance to antimicrobial peptides, relies on lipid A remodeling by PagP, rendering PagP a sought-after drug target. Despite a conserved sequence, more robust palmitoylation of lipid A is observed in Salmonella typhimurium compared to Escherichia coli, a possible consequence of the differential regulation of PagP expression and/or specific activity.

View Article and Find Full Text PDF