Pyroptosis is a programmed necrotic cell death executed by gasdermins, a family of pore-forming proteins. The cleavage of gasdermins by specific proteases enables their pore-forming activity. The activation of the prototype member of the gasdermin family, gasdermin D (GSDMD), is linked to innate immune monitoring by inflammasomes.
View Article and Find Full Text PDFInterferon-inducible human oligoadenylate synthetase-like (OASL) and its mouse ortholog, Oasl2, enhance RNA-sensor RIG-I-mediated type I interferon (IFN) induction and inhibit RNA virus replication. Here, we show that OASL and Oasl2 have the opposite effect in the context of DNA virus infection. In Oasl2 mice and OASL-deficient human cells, DNA viruses such as vaccinia, herpes simplex, and adenovirus induced increased IFN production, which resulted in reduced virus replication and pathology.
View Article and Find Full Text PDFInflammasome-activated caspase-1 cleaves gasdermin D to unmask its pore-forming activity, the predominant consequence of which is pyroptosis. Here, we report an additional biological role for gasdermin D in limiting cytosolic DNA surveillance. Cytosolic DNA is sensed by Aim2 and cyclic GMP-AMP synthase (cGAS) leading to inflammasome and type I interferon responses, respectively.
View Article and Find Full Text PDFInflammasomes are cytosolic multi-molecular complexes that sense intracellular microbial danger signals and metabolic perturbations. Inflammasome activation leads to the activation of caspase-1 and the release of pro-inflammatory cytokines IL-1β and IL-18 accompanied by cell death. An inflammasome-based surveillance machinery for Gram-negative bacterial infections has been recently discovered.
View Article and Find Full Text PDFSensing of lipopolysaccharide (LPS) in the cytosol triggers caspase-11 activation and is central to host defense against Gram-negative bacterial infections and to the pathogenesis of sepsis. Most Gram-negative bacteria that activate caspase-11, however, are not cytosolic, and the mechanism by which LPS from these bacteria gains access to caspase-11 in the cytosol remains elusive. Here, we identify outer membrane vesicles (OMVs) produced by Gram-negative bacteria as a vehicle that delivers LPS into the cytosol triggering caspase-11-dependent effector responses in vitro and in vivo.
View Article and Find Full Text PDFPathogen and cellular by-products released during infection or trauma are critical for initiating mucosal inflammation. The localization of these factors, their bioactivity and natural countermeasures remain unclear. This concept was studied in mice undergoing pulmonary inflammation after Staphylococcal enterotoxin A (SEA) inhalation.
View Article and Find Full Text PDFThe introduction of metal-on-metal total disc replacements motivated studies to evaluate the effects of cobalt-chromium (CoCr) nanoparticles on cells of the dura mater. Porcine fibroblasts and epithelial cells isolated from the dura mater were cultured with clinically-relevant CoCr nanoparticles and the ions, generated by the particles over 24 h, at doses up to 121 μm(3)per cell. Cell viability and production of proinflammatory cytokines was assessed over 4 days.
View Article and Find Full Text PDF