Publications by authors named "Bhanumoorthy P"

FAH (fumarylacetoacetate hydrolase) catalyses the final step of tyrosine catabolism to produce fumarate and acetoacetate. HT1 (hereditary tyrosinaemia type 1) results from deficiency of this enzyme. Previously, we prepared a partial mimic of the putative tetrahedral intermediate in the reaction catalysed by FAH co-crystallized with the enzyme to reveal details of the mechanism [Bateman, Bhanumoorthy, Witte, McClard, Grompe and Timm (2001) J.

View Article and Find Full Text PDF

Thermoascus aurantiacus xylanase is a thermostable enzyme which hydrolyses xylan, a major hemicellulose component of the biosphere. The crystal structure of this F/10 family xylanase, which has a triosephosphate isomerase (TIM) barrel (beta/alpha)(8) fold, has been solved to small-molecule accuracy at atomic resolution (1.11 A) at 293 K (RTUX) and at ultrahigh resolution (0.

View Article and Find Full Text PDF

Fumarylacetoacetate hydrolase (FAH) catalyzes the hydrolytic cleavage of a carbon-carbon bond in fumarylacetoacetate to yield fumarate and acetoacetate as the final step of Phe and Tyr degradation. This unusual reaction is an essential human metabolic function, with loss of FAH activity causing the fatal metabolic disease hereditary tyrosinemia type I (HT1). An enzymatic mechanism involving a catalytic metal ion, a Glu/His catalytic dyad, and a charged oxyanion hole was previously proposed based on recently determined FAH crystal structures.

View Article and Find Full Text PDF

Background: Fumarylacetoacetate hydrolase (FAH) catalyzes the final step of tyrosine and phenylalanine catabolism, the hydrolytic cleavage of a carbon-carbon bond in fumarylacetoacetate, to yield fumarate and acetoacetate. FAH has no known sequence homologs and functions by an unknown mechanism. Carbon-carbon hydrolysis reactions are essential for the human metabolism of aromatic amino acids.

View Article and Find Full Text PDF

Thermoascus aurantiacus xylanase is a thermostable enzyme which hydrolyses xylan, a major hemicellulose component in the biosphere. Crystals belonging to P21 space group with a=41.7 A, b=68.

View Article and Find Full Text PDF

Crystals suitable for high resolution X-ray diffraction analysis have been grown of the 29,774-Da protein, xylanase (1,-4-beta-xylan xylanohydrolase EC 3.2.1.

View Article and Find Full Text PDF