Publications by authors named "Bhanu P Mudraboyina"

Exploiting exchangeable covalent bonds as dynamic cross-links recently afforded a new class of polymer materials coined as vitrimers. These permanent networks are insoluble and infusible, but the network topology can be reshuffled at high temperatures, thus enabling glasslike plastic deformation and reprocessing without depolymerization. We disclose herein the development of functional and high-value ion-conducting vitrimers that take inspiration from poly(ionic liquid)s.

View Article and Find Full Text PDF

A series of anionic poly(ionic liquid)s with 1,2,3-triazolium counter cations are prepared by cation exchange between tailormade 1,3,4-trialkylated-1,2,3-triazolium iodides and a polystyrene derivative having pendant potassium bis(trifluoromethylsulfonyl)imide groups. The physical and ion-conducting properties of the resulting materials are compared to the parent potassium-containing polyelectrolyte based on H NMR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and broadband dielectric spectroscopy (BDS) measurements. Substitution of the potassium counter cation by 1,2,3-triazolium charge carriers affords polyelectrolytes with improved processability (broader solubility and removal of the crystalline behavior) as well as a substantial increase in anhydrous ionic conductivity.

View Article and Find Full Text PDF

A straightforward and expeditious monotopic approach for the preparation of 1,2,3-triazolium-based poly(ionic liquids) (TPILs) is reported. It is based on the solvent- and catalyst-free polyaddition of an α-azide-ω-alkyne monomer in the presence of methyl iodide or N-methyl bis[(trifluoromethyl)sulfonyl]imide alkylating agents. Poly(1,2,3-triazole)s generated in bulk or by thermal azide-alkyne cycloaddition (AAC) are quaternized in-situ to afford TPILs composed of 1,3,4- and 1,3,5-trisubstituted 1,2,3-triazolium units.

View Article and Find Full Text PDF

Herein we describe the synthesis and characterization of a neutral heteroleptic iridium complex bearing an unusual 2-pyridyl-6-methylthiazine dioxide ligand (pythdo). X-ray crystallographic analysis reveals that in the complex, the pythdo ligand is twisted and puckered, resulting in very low photoluminescent quantum efficiency. The emission profile is structured.

View Article and Find Full Text PDF

The design and syntheses of four self-complementary oligomers that contain an underlying AADD hydrogen bond sequence are presented, and their self-association was examined in the solution and solid state. The molecular recognition between the two strands is highly sensitive to substitutions of their component heterocycles. Substitution with electron-donating and -withdrawing groups and the influence of preorganization has a large effect on the overall stabilities of the complexes studied.

View Article and Find Full Text PDF

Two series of DDD and AAA hydrogen-bond arrays were synthesized that form triply-hydrogen-bonded double-helical complexes when combined in CDCl(3) solution. Derivatization of the DDD arrays with electron-withdrawing groups increases the complex association constants by up to a factor of 30 in those arrays examined. Derivatization of the AAA arrays with electron donating substituents reveals a similar magnitude effect on the complex stabilities.

View Article and Find Full Text PDF

In the title compound, C(5)H(8)N(3) (+)·C(24)H(20)B(-)·C(20)H(18)N(6), the 1,2-bis-(5,7-dimethyl-1,8-naphthyridin-2-yl)diazene mol-ecule is essentially planar (r.m.s.

View Article and Find Full Text PDF
Article Synopsis
  • Molecular strands with three hydrogen bond donor (D) or acceptor (A) heterocycles create stable double helical complexes.
  • These structures are formed by aligning the components in a specific complementary arrangement known as AAA-DDD.
  • The result is a robust and stable helical design that is significant for understanding molecular interactions.
View Article and Find Full Text PDF