A synchronous way of energy generation and storage in a single portable device is in high demand for the development of high-end electromagnetic interference (EMI) free modern electronics. Thus, this study highlights the devising of a piezoelectrically self-chargeable symmetric supercapacitor (PSCS) device using a polyvinyl alcohol (PVA)/succulent inspired grown g-CN@lithium sodium niobate (GNLNN)/potassium hydroxide (KOH) based piezo separator with GNLNN electrode. The GNLNN electrode exhibits a surface capacitive controlled specific capacitance of 503 F g.
View Article and Find Full Text PDFDynamic metal-coordinated adhesive and self-healable hydrogel materials have garnered significant attention in recent years due to their potential applications in various fields. These hydrogels can form reversible metal-ligand bonds, resulting in a network structure that can be easily broken and reformed, leading to self-healing capabilities. In addition, these hydrogels possess excellent mechanical strength and flexibility, making them suitable for strain-sensing applications.
View Article and Find Full Text PDFThe extensive utilization of high-end wireless electronic equipment in medical, robotics, satellite, and military communications has created a pressing challenge for real-time electromagnetic interference (EMI) control. Herein, a piezo-powered self-chargeable supercapacitor (PPSC) architecture based on an iron-doped graphitic nitride (Fe-g-CN: FGN) electrode with a solid piezoelectrolyte is devised, which can provide real-time controlled EMI shielding through piezo-powered self-charging voltage (SCV). This PPSC device along with real-time SCV-controlled EMI shielding also integrates additional features like nanoenergy generation and storing capability.
View Article and Find Full Text PDFLiving tissue uses stress-accumulated electrical charge to close wounds. Self-repairing synthetic materials, which are typically soft and amorphous, usually require external stimuli, prolonged physical contact, and long healing times. We overcome many of these limitations in piezoelectric bipyrazole organic crystals, which recombine following mechanical fracture without any external direction, autonomously self-healing in milliseconds with crystallographic precision.
View Article and Find Full Text PDFNanoscale
April 2020
The unique combination of piezoelectric energy harvesters and light detectors progressively strengthens their application in the development of modern electronics. Here, for the first time, we fabricated a polyvinylidene fluoride (PVDF) and formamidinium lead bromide nanoparticle (FAPbBr3 NP)-based composite aerogel film (FAPbBr3/PVDF) for harvesting electrical energy and photodetector applications. The uniform distribution of FAPbBr3 NPs in FAPbBr3/PVDF was achieved via the in situ synthesis of FAPbBr3 NPs in the PVDF matrix, which led to the stabilization of the γ-phase.
View Article and Find Full Text PDFNanoscale
December 2019
Here, we have fabricated a piezoelectric nanogenerator (PENG) composed of a Co-oxide (CoO) doped electro active PVDF based nanocomposite for efficient piezoelectric energy harvesting application where the CoO inclusion favours nucleation and polar β-phase stabilization in the nanocomposite. The morphological effect on the nucleation and β-phase stabilisation of PVDF has been explored experimentally. The flake-like morphology of CoO nanoparticles, synthesized by using a MOF, has a more effective surface area to nucleate and stabilise the β-phase of PVDF than that of rod-like (hydrothermal) and spherical (commercial) nanoparticles.
View Article and Find Full Text PDFThe expeditious growth of portable electronics has endorsed the researchers to develop self-powered devices that synchronically harvest and store energy. However, it is quite challenging to integrate two distinct phenomena in a single portable device. Here, we emphasize the fabrication of a triboelectric driven self-charging and self-healing asymmetric supercapacitor (SCSHASC) power cell composed of magnetic cobalt ferrite grown on a stainless steel (SS) fabric (CoFeO@SS) as positive and iron oxides decorated reduced graphene oxide grown on a SS fabric (Fe-RGO@SS) as negative electrodes separated by a KOH-soaked self-healing polymer hydrogel electrolyte membrane.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2017
We highlight the design and fabrication of a polydimethylsiloxane (PDMS) encapsulated advanced all-solid-state asymmetric supercapacitor (ASC) device consisting of hierarchical mesoporous zinc-iron-cobalt ternary oxide (ZICO) nanowire coated nickel (Ni) foam (ZICO@Ni foam) as a promising positive electrode and nitrogen doped graphene coated Ni foam (N-G@Ni foam) as negative electrode in the presence of PVA-KOH gel electrolyte. Owing to outstanding electrochemical behavior and ultrahigh specific capacitance of ZICO (≈ 2587.4 F/g at 1 A/g) and N-G (550 F/g at 1 A/g) along with their mutual synergistic outputs, the assembled all-solid-state ASC device exhibits an outstanding energy density of ≈40.
View Article and Find Full Text PDFIn this work, we report the superior piezoelectric energy harvester ability of a non-electrically poled Fe-doped reduced graphene oxide (Fe-RGO)/poly(vinylidene fluoride) (PVDF) nanocomposite film prepared through a simple solution casting technique that favors the nucleation and stabilization of ≈99% relative proportion of polar γ-phase. The piezoelectric energy harvester was made with non-electrically poled Fe-RGO/PVDF nanocomposite film that gives an open circuit output voltage and short circuit current up to 5.1 V and 0.
View Article and Find Full Text PDFThe thermal and rheological properties of clay-containing poly[(butylene succinate)-co-adipate] (PBSA) nanocomposites are reported. The nanocomposites of PBSA with various weight percentages of organically modified montmorillonite (OMMT) loadings have been prepared by melt-mixing in a batch-mixer. The melting and crystallization behaviours of PBSA and its nanocomposites have been studied using differential scanning calorimeter (DSC).
View Article and Find Full Text PDF