Publications by authors named "Bhakti Pawar"

Rheumatoid arthritis (RA) is a chronic inflammatory immune disease that causes synovial membrane inflammation and destruction of articular cartilage. Traditionally, methotrexate is a first-line drug for RA treatment. However, its therapeutic benefits are insufficient.

View Article and Find Full Text PDF

Patients suffering from diabetes mellitus are prone to develop diabetic wounds that are non-treatable with conventional therapies. Hence, there is an urgent need of hour to develop the therapy that will overcome the lacunas of conventional therapies. This investigation reports the Quality by Design-guided one-pot green synthesis of unique Opto-Laser activatable nanoSilver ThermoGel (OL→nSil-ThermoGel) for hyperthermia-assisted treatment of full-thickness diabetic wounds in mice models.

View Article and Find Full Text PDF

Digital therapeutics (DTx) is a recently conceived idea in health care that aims to cure ailments and modify patient behavior by employing a range of digital technologies. Notably, when traditional medication is not entirely efficacious, DTx offers an innovative avenue for treatments linked to dysfunctional behaviors and lifestyle management. DTx involves extremely adaptable therapeutic devices that empower greater patient engagement in treating illness, using algorithms to collect, transfer and analyze the patient's data.

View Article and Find Full Text PDF

Cutaneous wounds are one of the pressing concerns for healthcare systems globally. With large amounts of water, conventional hydrogels encounter obstacles in effectively delivering small molecules and peptides for wound healing. The surplus water content challenges the stability and sustained release of small molecules and peptides, diminishing their therapeutic efficacy.

View Article and Find Full Text PDF

Carbonaceous nanomaterials (CNMs) have drawn tremendous biomedical research interest because of their unique structural features. Recently, CNMs, namely carbon dots, fullerenes, graphene, etc, have been successful in establishing them as considerable nanotherapeutics for phototherapy applications due to their electrical, thermal, and surface properties. This review aims to crosstalk the current understanding of CNMs as multimodal compounds in photothermal and photodynamic therapies as an integrated approach to treating cancer.

View Article and Find Full Text PDF

Arthritis is the inflammation and tenderness of the joints because of some metabolic, infectious, or constitutional reasons. Existing arthritis treatments help in controlling the arthritic flares, but more advancement is required to cure arthritis meticulously. Biomimetic nanomedicine represents an exceptional biocompatible treatment to cure arthritis by minimizing the toxic effect and eliminating the boundaries of current therapeutics.

View Article and Find Full Text PDF

To date, nanomaterials have been widely used for the treatment and diagnosis of rheumatoid arthritis. Amongst various nanomaterials, polymer-based nanomaterials are becoming increasingly popular in nanomedicine due to their functionalised fabrication and easy synthesis, making them biocompatible, cost-effective, biodegradable, and efficient nanocarriers for the delivery of drugs to a specific target cell. They act as photothermal reagents with high absorption in the near-infrared region that can transform near-infrared light into localised heat with fewer side effects, provide easier integration with existing therapies, and offer increased effectiveness.

View Article and Find Full Text PDF

It is well known that the presence of a blood-brain barrier (BBB) makes drug delivery to the brain more challenging. There are various mechanistic routes through which therapeutic molecules travel and deliver the drug across the BBB. Among all the routes, the transcellular route is widely explored to deliver therapeutics.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) is considered a double-edged sword. The slightly elevated level of ROS helps in wound healing by inhibiting microbial infection. In contrast, excessive ROS levels in the wound site show deleterious effects on wound healing by extending the inflammation phase.

View Article and Find Full Text PDF

Although oral drug delivery is considered as most acceptable route for administering the active pharmaceutical ingredients to patients of all age-groups with the exceptions of bed-ridden patients and infants, the extent and rate of drug reaching the systemic circulation (in other word, drug bioavailability) always depends on many factors such as drug solubility in gastrointestinal fluids and drug permeation into intraluminal epithelial membrane structure, absence (fasting state) and presence (fed state) of food materials in the gastrointestinal tract, and individual variations in gastric emptying time. Taking the most influential factors like drug solubility and its permeability into consideration, these two factors play a pivotal role and even act as the litmus test for the formulation scientists who involve in oral dosage form development. It is very clear that there should be an optimum solubility and permeability balance to be reachable for getting the desired drug bioavailability to exert the intended therapeutic activity.

View Article and Find Full Text PDF

Objectives: In search of a novel antifungal agent with high susceptibility and increased antifungal potency it is necessary to increase the overall lipophilicity of these agents. In view of that, we have synthesized different carboxylic acid ester analogues of fluconazole, such as fluconazole-benzoate, fluconazole-p-nitrobenzoate, fluconazole-p-methoxybenzoate and fluconazole-toluate, with varying degrees of lipophilicity. In order to probe molecular level interactions of these molecules with biomembrane, lipid bilayers prepared from l-α-dipalmitoyl phosphatidyl choline (DPPC) as the model membrane were used.

View Article and Find Full Text PDF

Resistance to currently available antifungal drugs necessitates development of new drugs using rapid, robust and automated methods to test a large number of newly synthesized drugs in less time. We have compared the effect of ketoconazole, fluconazole and its synthesized analogues on Candida albicans ATCC 10231. A metabolic profile of C.

View Article and Find Full Text PDF