Naturally occurring homoisoflavonoids isolated from some Liliaceae plants have been reported to have diverse biological activities (e.g., antioxidant, anti-inflammatory, and anti-angiogenic effects).
View Article and Find Full Text PDFJ Agric Food Chem
December 2021
, popularly known as a miracle tree or tree of life, has been extensively used as a functional food and nutritional asset worldwide. Ethnomedicinal and traditional uses of indicate that this plant might have a pleiotropic therapeutic efficacy against most human ailments. In fact, is reported to have several pharmacological activities, including antioxidant, antibacterial, antifungal, antidiabetic, antipyretic, antiulcer, antispasmodic, antihypertensive, antitumor, hepatoprotective, and cardiac stimulant properties.
View Article and Find Full Text PDFFront Mol Neurosci
September 2021
A typical neuron consists of a soma, a single axon with numerous nerve terminals, and multiple dendritic trunks with numerous branches. Each of the 100 billion neurons in the brain has on average 7,000 synaptic connections to other neurons. The neuronal endolysosomal compartments for the degradation of axonal and dendritic waste are located in the soma region.
View Article and Find Full Text PDFCell Mol Neurobiol
November 2022
Microglial activation is considered as the critical pathogenic event in diverse central nervous system disorders including cerebral ischemia. Proinflammatory responses of activated microglia have been well reported in the ischemic brain and neuroinflammatory responses of activated microglia have been believed to be the potential therapeutic strategy. However, despite having proinflammatory roles, microglia can have significant anti-inflammatory roles and they are associated with the production of growth factors which are responsible for neuroprotection and recovery after ischemic injury.
View Article and Find Full Text PDFActivation of microglia and/or astrocytes often releases proinflammatory molecules as critical pathogenic mediators that can promote neuroinflammation and secondary brain damages in diverse diseases of the central nervous system (CNS). Therefore, controlling the activation of glial cells and their neuroinflammatory responses has been considered as a potential therapeutic strategy for treating neuroinflammatory diseases. Recently, receptor-mediated lysophospholipid signaling, sphingosine 1-phosphate (S1P) receptor- and lysophosphatidic acid (LPA) receptor-mediated signaling in particular, has drawn scientific interest because of its critical roles in pathogenies of diverse neurological diseases such as neuropathic pain, systemic sclerosis, spinal cord injury, multiple sclerosis, cerebral ischemia, traumatic brain injury, hypoxia, hydrocephalus, and neuropsychiatric disorders.
View Article and Find Full Text PDFDespite being a major global health concern, cerebral ischemia/stroke has limited therapeutic options. Tissue plasminogen activator (tPA) is the only available medication to manage acute ischemic stroke, but this medication is associated with adverse effects and has a narrow therapeutic time window. Curcumin, a polyphenol that is abundantly present in the rhizome of the turmeric plant (), has shown promising neuroprotective effects in animal models of neurodegenerative diseases, including cerebral ischemia.
View Article and Find Full Text PDFTanshinones, lipophilic diterpenes isolated from the rhizome of Salvia miltiorrhiza, have diverse pharmacological activities against human ailments including neurological diseases. In fact, tanshinones have been used to treat heart diseases, stroke, and vascular diseases in traditional Chinese medicine. During the last decade, tanshinones have been the most widely studied phytochemicals for their neuroprotective effects against experimental models of cerebral ischemia and Alzheimer's diseases.
View Article and Find Full Text PDFNitric oxide (NO) is a neurotransmitter that mediates the activation and inhibition of inflammatory cascades. Even though physiological NO is required for defense against various pathogens, excessive NO can trigger inflammatory signaling and cell death through reactive nitrogen species-induced oxidative stress. Excessive NO production by activated microglial cells is specifically associated with neuroinflammatory and neurodegenerative conditions, such as Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis, ischemia, hypoxia, multiple sclerosis, and other afflictions of the central nervous system (CNS).
View Article and Find Full Text PDFThe novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/COVID-19), is a worldwide pandemic, as declared by the World Health Organization (WHO). It is a respiratory virus that infects people of all ages. Although it may present with mild to no symptoms in most patients, those who are older, immunocompromised, or with multiple comorbidities may present with severe and life-threatening infections.
View Article and Find Full Text PDFThe search for novel therapeutic agents for the management of cerebral ischemia/stroke has become an appealing research interest in the recent past. Neuroprotective phytochemicals as novel stroke drug candidates have recently drawn significant interests from stroke scientists due to their strong brain protective effects in animal stroke models. The underlying mechanism of action is likely owing to their anti-inflammatory properties, even though other mechanisms such as anti-oxidation and vasculoprotection have also been proposed.
View Article and Find Full Text PDFLysophosphatidic acid receptor 1 (LPA) contributes to brain injury following transient focal cerebral ischemia. However, the mechanism remains unclear. Here, we investigated whether nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation might be an underlying mechanism involved in the pathogenesis of brain injury associated with LPA following ischemic challenge with transient middle cerebral artery occlusion (tMCAO).
View Article and Find Full Text PDFAntioxidants (Basel)
November 2020
Stroke is a leading cause of death. Stroke survivors often suffer from long-term functional disability. This study demonstrated neuroprotective effects of BMS-986020 (BMS), a selective lysophosphatidic acid receptor 1 (LPA) antagonist under clinical trials for lung fibrosis and psoriasis, against both acute and sub-acute injuries after ischemic stroke by employing a mouse model with transient middle cerebral artery occlusion (tMCAO).
View Article and Find Full Text PDFSphingosine 1-phosphate (S1P) is an important lipid biomolecule that exerts pleiotropic cellular actions as it binds to and activates its five G-protein-coupled receptors, S1P. Through these receptors, S1P can mediate diverse biological activities in both healthy and diseased conditions. S1P is produced by S1P-producing enzymes, sphingosine kinases (SphK1 and SphK2), and is abundantly present in different organs, including the brain.
View Article and Find Full Text PDFAdvanced glycation end products (AGEs) are produced through the binding of glycated protein or lipid with sugar, and they are known to be involved in the pathogenesis of both age-dependent and independent neurological complications. Among dicarbonyl compounds, methylglyoxal (MGO), which is produced from glucose breakdown, is a key precursor of AGE formation and neurotoxicity. Several studies have shown the toxic effects of bovine serum albumin (BSA)-AGE (prepared with glucose, sucrose or fructose) both in in vitro and in vivo.
View Article and Find Full Text PDFThe pathogenesis of psoriasis, an immune-mediated chronic skin barrier disease, is not fully understood yet. Here, we identified lysophosphatidic acid (LPA) receptor 5 (LPA)-mediated signaling as a novel pathogenic factor in psoriasis using an imiquimod-induced psoriasis mouse model. Amounts of most LPA species were markedly elevated in injured skin of psoriasis mice, along with LPA upregulation in injured skin.
View Article and Find Full Text PDFTumor necrosis factor-alpha (TNF-α) is a well-known pro-inflammatory cytokine responsible for the modulation of the immune system. TNF-α plays a critical role in almost every type of inflammatory disorder, including central nervous system (CNS) diseases. Although TNF-α is a well-studied component of inflammatory responses, its functioning in diverse cell types is still unclear.
View Article and Find Full Text PDFIsorhapontigenin (ISO), a tetrahydroxylated stilbenoid, is an analog of resveratrol (Rsv). The various biological activities of Rsv and its derivatives have been previously reported in the context of both cancer and inflammation. However, the anti-cancer effect of ISO against breast cancer has not been well established, despite being an orally bioavailable dietary polyphenol.
View Article and Find Full Text PDF