The alpha1 (α1) subunit of the sodium/potassium ATPase (i.e., Na/K-ATPase α1), the prototypical sodium pump, is expressed in each eukaryotic cell.
View Article and Find Full Text PDFSodium channels play pivotal roles in health and diseases due to their ability to control cellular excitability. The pore-forming α-subunits (sodium channel alpha subunits) of the voltage-sensitive channels (i.e.
View Article and Find Full Text PDFFunctional heterologous expression of naturally expressed mouse α6*-nicotinic acetylcholine receptors (mα6*-nAChRs; where "*" indicates the presence of additional subunits) has been difficult. Here we expressed and characterized wild-type (WT), gain-of-function, chimeric, or gain-of-function chimeric nAChR subunits, sometimes as hybrid nAChRs containing both human (h) and mouse (m) subunits, in Xenopus oocytes. Hybrid mα6mβ4hβ3- (∼ 5-8-fold) or WT mα6mβ4mβ3-nAChRs (∼ 2-fold) yielded higher function than mα6mβ4-nAChRs.
View Article and Find Full Text PDFThere occur two rare variations, Asp(D)478Asn(N) and Asp(D)478Glu(E), in the putative cytoplasmic amphipathic α-helices of human nicotinic acetylcholine receptor (nAChR) α2 subunit as a result of mutation in the 1st (G → A: rs141072985) and 3rd (C → A: rs56344740) nucleotide of its 478th triplet codon (GAC). We assessed the effects of these two variations on the function of α2β2- and α2β4-nAChRs as they could alter the electronegativity and/or the structure of the cytoplasmic 'portals' (framed by subunit amphipathic α-helices) necessary for obligate ion permeation from extracellular space to cytoplasm. We injected decreasing ratio of subunit cRNAs (α:β; 10:1, 1:1 and 1:10) into Xenopus oocytes to express putative low-sensitivity (LS; 10:1), intermediate-sensitivity (IS; 1:1) and high sensitivity (HS; 1:10) isoforms of wild type and variant α2β2- and α2β4-nAChRs.
View Article and Find Full Text PDFBackground: Functional heterologous expression of naturally-expressed and apparently functional mammalian α6*-nicotinic acetylcholine receptors (nAChRs; where '*' indicates presence of additional subunits) has been difficult. Here we wanted to investigate the role of N-terminal domain (NTD) residues of human (h) nAChR α6 subunit in the functional expression of hα6*-nAChRs. To this end, instead of adopting random mutagenesis as a tool, we used 15 NTD rare variations (i.
View Article and Find Full Text PDFA cytosine to thymidine (C → T) missense mutation in the signal peptide (SP) sequence (rs2472553) of the nicotinic acetylcholine receptor (nAChR) α2 subunit produces a threonine-to-isoleucine substitution (T22I) often associated with nicotine dependence (ND). We assessed effects on function of α2*-nAChR ('*'indicates presence of additional subunits) of this mutation, which could alter SP cleavage, RNA/protein secondary structure, and/or efficiency of transcription, translation, subunit assembly, receptor trafficking or cell surface expression. Two-electrode voltage clamp analyses indicate peak current responses to ACh or nicotine are decreased 2.
View Article and Find Full Text PDFTo further our understanding of the effects of nicotine on the molecular responses of macrophages during virus or virus-like infections, poly(I:C)-stimulated macrophage-like RAW264.2 cells or mouse primary peritoneal macrophages were challenged with nicotine; and their molecular responses were evaluated using a qRT-PCR array, antibody array, ELISA, Western blotting, and Ca(2+) imaging. Of 51 genes expressed in the Toll-like receptor (TLR) and RIG-I-like receptor (RLR) pathways, mRNA expression of 15 genes in RAW264.
View Article and Find Full Text PDFCatalase, an antioxidant and hydroperoxidase enzyme protects the cellular environment from harmful effects of hydrogen peroxide by facilitating its degradation to oxygen and water. Molecular information on a cnidarian catalase and/or peroxidase is, however, limited. In this work an apparent full length cDNA sequence coding for a catalase (HvCatalase) was isolated from Hydra vulgaris using 3'- and 5'- (RLM) RACE approaches.
View Article and Find Full Text PDFWe previously have shown that β3 subunits either eliminate (e.g. for all-human (h) or all-mouse (m) α6β4β3-nAChR) or potentiate (e.
View Article and Find Full Text PDFThe nicotinic acetylcholine receptor (nAChR) β3 subunit is thought to serve an accessory role in nAChR subtypes expressed in dopaminergic regions implicated in drug dependence and reward. When β3 subunits are expressed in excess, they have a dominant-negative effect on function of selected nAChR subtypes. In this study, we show, in Xenopus oocytes expressing α2, α3 or α4 plus either β2 or β4 subunits, that in the presumed presence of similar amounts of each nAChR subunit, co-expression with wild-type β3 subunits generally (except for α3*-nAChR) lowers amplitudes of agonist-evoked, inward peak currents by 20-50% without having dramatic effects (≤ 2-fold) on agonist potencies.
View Article and Find Full Text PDFTo further the understanding of functional α6α5*-nicotinic acetylcholine receptors (nAChR; the asterisk (*) indicates known or possible presence of other subunits), we have heterologously expressed in oocytes different, mouse or human, nAChR subunit combinations. Coexpression with wild-type α5 subunits or chimeric α5/β3 subunits (in which the human α5 subunit N-terminal, extracellular domain is linked to the remaining domains of the human β3 subunit) almost completely abolishes the very small amount of function seen for α6β4*-nAChR and does not induce function of α6β2*-nAChR. Coexpression with human α5(V9)'(S) subunits bearing a valine 290 to serine mutation in the 9' position of the second transmembrane domain does not rescue the function of α6β4*-nAChR or induce function of α6β2*-nAChR.
View Article and Find Full Text PDFDespite the apparent function of naturally expressed mammalian α6*-nicotinic acetylcholine receptors (α6*-nAChR; where * indicates the known or possible presence of additional subunits), their functional and heterologous expression has been difficult. Here, we report that coexpression with wild-type β3 subunits abolishes the small amount of function typically seen for all-human or all-mouse α6β4*-nAChR expressed in Xenopus oocytes. However, levels of function and agonist potencies are markedly increased, and there is atropine-sensitive blockade of spontaneous channel opening upon coexpression of α6 and β4 subunits with mutant β3 subunits harboring valine-to-serine mutations at 9'- or 13'-positions.
View Article and Find Full Text PDFApparent full-length cDNA sequences coding for manganese superoxide dismutase (HvMnSOD) and extracellular superoxide dismutase (HvEC-SOD) were isolated from Hydra vulgaris in order to understand their expression and 3D structures; and explore their possibility of being used as for biomarkers for environmental stress and toxicity. The deduced HvMnSOD protein consists of 219 amino acids of which first 21 amino acids constitute a presumed mitochondria-targeting signal peptide whereas HvEC-SOD protein consists of 189 amino acids of which first 19 amino acids constitute a presumed signal peptide. Molecular model generated for HvMnSOD displayed the N-terminal long alpha antiparallel hairpin and the C-terminal mixed alpha/beta fold characteristic of MnSODs and that for HvEC-SOD displayed the characteristic CuZnSOD â-barrel fold.
View Article and Find Full Text PDFApparent full-length cDNA sequences coding respectively for mitochondrial (HvGPx41) and nuclear (HvGPx42) phospholipid hydroperoxide glutathione peroxidase were isolated from Hydra vulgaris. The cDNA sequences share total identity in their 3'-end and differ in their 5'-end. The protein-coding regions of the HvGPx41 and HvGPx42 cDNA encode polypeptides of 190 and 168 amino acids, including a TGA-encoded selenocysteine, respectively.
View Article and Find Full Text PDFNovaSil (NS) clay, a common anti-caking agent in animal feeds, has been shown to sorb aflatoxins in the GI tract and diminish their bioavailability and adverse effects in short-term animal studies. Based on this evidence, it is hypothesized that clay-based enterosorption of aflatoxins may be a useful strategy for the prevention of aflatoxicosis in human populations. However, the potential toxicity of long-term dietary exposure to NS has not been determined.
View Article and Find Full Text PDF