Publications by authors named "Bhabatarak Bhattacharyya"

Crocin, a constituent of the saffron spice, exhibits promising antitumor activity in animal models and also inhibits the proliferation of several types of cancer cells in culture. Recently, we have shown that crocin binds to purified tubulin at the vinblastine site, depolymerizes microtubules and induces a mitotic block in cultured cells. Here, we extend our previous suggestion and explore the cellular effects of crocin to further understand its mechanism of action.

View Article and Find Full Text PDF

Tau has long been associated with Alzheimer's disease, where it forms neurofibrillary tangles. Here we show for the first time by electron microscopy that MAP2c prevents arachidonic acid-induced in vitro aggregation of tau. However, phosphorylated MAP2c failed to prevent the same.

View Article and Find Full Text PDF

Curcumin, derived from rhizomes of the Curcuma longa plant, is known to possess a wide range of medicinal properties. We have examined the interaction of curcumin with actin and determined their binding and thermodynamic parameters using isothermal titration calorimetry. Curcumin is weakly fluorescent in aqueous solution, and binding to actin enhances fluorescence several fold with a large blue shift in the emission maximum.

View Article and Find Full Text PDF

Curcumin has shown promising therapeutic utilities for many diseases, including cancer; however, its clinical application is severely limited because of its poor stability under physiological conditions. Here we find that curcumin also loses its activity instantaneously in a reducing environment. Curcumin can exist in solution as a tautomeric mixture of keto and enol forms, and the enol form was found to be responsible for the rapid degradation of the compound.

View Article and Find Full Text PDF

Tubulin, an α,β heterodimer, has four distinct ligand binding sites (for paclitaxel, peloruside/laulimalide, vinca, and colchicine). The site where colchicine binds is a promising drug target for arresting cell division and has been observed to accommodate compounds that are structurally diverse but possess comparable affinity. This investigation, using two such structurally different ligands as probes (one being colchicine itself and another, TN16), aims to provide insight into the origin of this diverse acceptability to provide a better perspective for the design of novel therapeutic molecules.

View Article and Find Full Text PDF

Although curcumin is known for its anticarcinogenic properties, the exact mechanism of its action or the identity of the target receptor is not completely understood. Studies on a series of curcumin analogues, synthesized to investigate their tubulin binding affinities and tubulin self-assembly inhibition, showed that: (i) curcumin acts as a bifunctional ligand, (ii) analogues with substitution at the diketone and acetylation of the terminal phenolic groups of curcumin are less effective, (iii) a benzylidiene derivative, compound 7, is more effective than curcumin in inhibiting tubulin self-assembly. Cell-based studies also showed compound 7 to be more effective than curcumin.

View Article and Find Full Text PDF

Fluorescence spectroscopy has been extensively used to characterize ligand binding to tubulin and microtubules. The inherent advantages of fluorescence spectroscopic methods lie in their ease, sensitivity to local environmental changes, and ability to describe the protein-ligand interactions qualitatively as well as quantitatively in equilibrium conditions. In this chapter, we have described how fluorescence spectroscopy has been used to decipher molecular interaction between a wide variety of ligands and tubulin.

View Article and Find Full Text PDF

Genistein (4',5,7-trihydroxyisoflavone), an isoflavone, is a major constituent of soyfoods. It has potential antiproliferative activity against several tumor types. We have examined the effect of genistein on cellular microtubules as well as its binding with purified tubulin in vitro.

View Article and Find Full Text PDF

The interaction between ZnO nanoparticles (NPs) and lysozyme has been studied using calorimetric as well as spectrophotometric techniques, and interpreted in terms of the three-dimensional structure. The circular dichroism spectroscopic data show an increase in alpha-helical content on interaction with ZnO NPs. Glutaraldehyde cross-linking studies indicate that the monomeric form occurs to a greater extent than the dimer when lysozyme is conjugated with ZnO NPs.

View Article and Find Full Text PDF

Indanocine, a synthetic indanone, has shown potential antiproliferative activity against several tumor types. It is different from many other microtubule-disrupting drugs, because it displays toxicity toward multidrug resistance cells. We have examined the interaction of indanocine with tubulin and determined their binding and thermodynamic parameters using isothermal titration calorimetry (ITC).

View Article and Find Full Text PDF

Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), a naphthoquinone isolated from the roots of Plumbaginaceae plants, has potential antiproliferative activity against several tumor types. We have examined the effects of plumbagin on cellular microtubules ex vivo as well as its binding with purified tubulin and microtubules in vitro. Cell viability experiments using human non-small lung epithelium carcinoma cells (A549) indicated that the IC 50 value for plumbagin is 14.

View Article and Find Full Text PDF

The present study was aimed to elucidate the mechanism of stabilization of tubulin by deuterium oxide (D(2)O). Rate of decrease of tryptophan fluorescence during aging of tubulin at 4 degrees C and 37 degrees C was significantly lower in D(2)O than in H(2)O. Circular dichroism spectra of tubulin after incubation at 4 degrees C, suggested that complete stabilization of the secondary structure in D(2)O during the first 24 hours of incubation.

View Article and Find Full Text PDF

In this review, an attempt has been made to throw light on the mechanism of action of colchicine and its different analogs as anti-cancer agents. Colchicine interacts with tubulin and perturbs the assembly dynamics of microtubules. Though its use has been limited because of its toxicity, colchicine can still be used as a lead compound for the generation of potent anti-cancer drugs.

View Article and Find Full Text PDF

Molecular chaperones are known to play an important role in facilitating the proper folding of many newly synthesized proteins. Here, we have shown that chaperone proteins exhibit another unique property to inhibit tubulin self-assembly efficiently. Chaperones tested include alpha-crystallin from bovine eye lenses, HSP16.

View Article and Find Full Text PDF

Thermodynamics of podophyllotoxin binding to tubulin and its multiple points of attachment with tubulin has been studied in detail using isothermal titration calorimetry. The calorimetric enthalpy of the association of podophyllotoxin with tubulin is negative and occurs with a negative heat capacity change (DeltaC(p) = -2.47 kJ mol(-)(1) K(-)(1)).

View Article and Find Full Text PDF

Several sulfonamides have antitumor activities and are currently undergoing clinical evaluation for the treatment of cancer. In this study, we have elucidated the antiproliferative mechanism of action of five indole sulfonamides. The indole sulfonamides inhibited the polymerization of microtubule protein into microtubules in vitro.

View Article and Find Full Text PDF

The persistence of Mycobacterium tuberculosis is a major cause of concern in tuberculosis (TB) therapy. In the persistent mode the pathogen can resist drug therapy, allowing the possibility of reactivation of the disease. Several protein factors have been identified that contribute to persistence, one of them being the 16-kDa low-molecular-weight mycobacterial heat shock protein Hsp16.

View Article and Find Full Text PDF

Isotypes of vertebrate tubulin have variable amino acid sequences, which are clustered at their C-terminal ends. Isotypes bind colchicine at different on-rates and affinity constants. The kinetics of colchicine binding to purified (unfractionated) brain tubulin have been reported to be biphasic under pseudo-first-order conditions.

View Article and Find Full Text PDF

Structure-activity relationship studies have established that the A and C rings of colchicine comprise the minimum structural feature necessary for high affinity drug-tubulin binding. Thus, colchicine acts as a bifunctional ligand by making two points of attachment to the protein. Furthermore, analogues belonging to the iso series of colchicine are virtually inactive in binding to tubulin and inhibiting microtubule assembly.

View Article and Find Full Text PDF

The discovery of several sulfonamide drugs paved the way toward the synthesis of 6 (N-[2-[(4-hydroxyphenyl)amino]-3-pyridinyl]-4-methoxybenzenesulfonamide, E7010) and 7 (N-(3-fluoro-4-methoxyphenyl)pentafluorobenzenesulfonamide, T138067), both of which inhibit tubulin polymerization and are under clinical development. A series of diarylsulfonamides containing an indole scaffold was also found to have antimitotic properties, but their mode of interactions with tubulin has remained unidentified so far. In this study, we demonstrate that these sulfonamide drugs bind to the colchicine site of tubulin in a reversible manner.

View Article and Find Full Text PDF

The carboxy terminals of alphabeta-tubulins are flexible regions rich in acidic amino acid residues that play an inhibitory role in the polymerization of tubulin to microtubules. We have shown that the binding of colchicine and its B-ring analogs (with C-7 substituents) to tubulin are pH sensitive and have high activation energies. Under identical conditions, the binding of analogs without C-7 substituents is pH independent and has lower activation energy.

View Article and Find Full Text PDF

It is well established that in addition to its functional role in cell motility, cell division and intracellular transport, cytoskeletal protein tubulin also possesses significant chaperone-like activity. In vitro studies from our laboratory showed that dimeric tubulin can prevent stress induced aggregation of substrate proteins, can resist thermal deactivation of enzymes and can also refold enzymes from their fully denatured state [Manna, T., Sarkar, T.

View Article and Find Full Text PDF

Studies on vinca domain binding drugs were done in great details by a number of workers as it is recognized as a potential target for anticancer drug development. Their structures, properties, mode of action, success and failures as potential anticancer drug have been discussed in short details in this review. Among these drugs rhizoxin and maytansine are competitive inhibitors, and bind at the vinblastine binding site of tubulin where as others are non-competitive inhibitors.

View Article and Find Full Text PDF

Interactions of bisANS and ANS to tubulin in the presence and absence of GTP were investigated, and the binding and thermodynamic parameters were determined using isothermal titration calorimetry. Like bisANS binding to tubulin, we observed a large number of lower affinity ANS binding sites (N1 = 1.3, K1 = 3.

View Article and Find Full Text PDF