Publications by authors named "Bezu J"

Article Synopsis
  • Endothelial barrier disruption plays a crucial role in organ dysfunction during inflammatory conditions like sepsis, and the kinase Arg/Abl2 has been identified as a key mediator of this disruption.
  • Depleting Arg in endothelial cells activates RhoA and Rac1, enhancing cell adhesion and reducing cell retraction and gap formation.
  • Genetic deletion of Arg in vivo reduces vascular leaks in the skin and lungs, highlighting its importance as a potential therapeutic target for conditions associated with vascular leakage.
View Article and Find Full Text PDF

Considering its intolerance to ischemia, it is of critical importance for the brain to efficiently process microvascular occlusions and maintain tissue perfusion. In addition to collateral microvascular flow and enzymatic degradation of emboli, the endothelium has the potential to engulf microparticles and thereby recanalize the vessel, through a process called angiophagy. Here, we set out to study the dynamics of angiophagy in relation to cytoskeletal remodeling in vitro and reperfusion in vivo.

View Article and Find Full Text PDF

Endothelial barrier dysfunction leads to edema and vascular leak, causing high morbidity and mortality. Previously, Abl kinase inhibition has been shown to protect against vascular leak. Using the distinct inhibitory profiles of clinically available Abl kinase inhibitors, we aimed to provide a mechanistic basis for novel treatment strategies against vascular leakage syndromes.

View Article and Find Full Text PDF

RhoGTPases regulate cytoskeletal dynamics, migration and cell-cell adhesion in endothelial cells. Besides regulation at the level of guanine nucleotide binding, they also undergo post-translational modifications, for example ubiquitination. RhoGTPases are ubiquitinated by Cullin RING ligases which are in turn regulated by neddylation.

View Article and Find Full Text PDF

Purpose: We previously found that homocysteine (Hcy)-induced apoptosis in endothelial cells coincided with increased NADPH oxidase (NOX) activity. In addition, in ischemic endothelial cells present in the heart, we showed that loss of serine protease dipeptidyl peptidase IV (DPP4) expression was correlated with induction of tissue factor (TF) expression. Since Hcy can initiate thrombosis through the induction of TF expression, in this study, we evaluated whether the inverse relation of TF and DPP4 is also Hcy-dependent and whether NOX-mediated reactive oxygen species (ROS) is playing a role herein.

View Article and Find Full Text PDF
Article Synopsis
  • Rho GTPases are crucial for maintaining endothelial barrier function by regulating the actin cytoskeleton and adherens junctions, functioning as molecular switches mainly through GDP and GTP exchange.
  • The study focused on the role of F-box proteins, particularly FBXW7, in endothelial barrier function, revealing that loss of FBXW7 led to increased contractility and permeability in human umbilical vein endothelial cells due to the accumulation of RhoB GTPase.
  • The findings suggest that FBXW7 affects RhoB activity through changes in the cholesterol biosynthesis pathway, which alters RhoB's prenylation and activity, ultimately impacting endothelial barrier stability.
View Article and Find Full Text PDF

Background: Uraemia induces endothelial cell (EC) injury and impaired repair capacity, for which the underlying mechanism remains unclear. Active vitamin D (VD) may promote endothelial repair, however, the mechanism that mediates the effects of VD in chronic kidney disease are poorly understood. Thus, we investigated uraemia-induced endothelial damage and the protection against such damage by active VD.

View Article and Find Full Text PDF

Pleural effusion is a frequent side-effect of dasatinib, a second-generation tyrosine kinase inhibitor used in the treatment of chronic myelogenous leukaemia. However, the underlying mechanisms remain unknown. We hypothesised that dasatinib alters endothelial integrity, resulting in increased pulmonary vascular endothelial permeability and pleural effusion.

View Article and Find Full Text PDF

Endothelial cells line the vasculature and act as gatekeepers that control the passage of plasma, macromolecules and cells from the circulation to the interstitial space. Dysfunction of the endothelial barrier can lead to uncontrolled leak or edema. Vascular leakage is a hallmark of a range of diseases and despite its large impact no specialized therapies are available to prevent or reduce it.

View Article and Find Full Text PDF

RhoGTPases are known regulators of intracellular actin dynamics that are important for maintaining endothelial barrier function. RhoA is most extensively studied as a key regulator of endothelial barrier function, however the function of the 2 highly homologous family-members (> 88%) RhoB and RhoC in endothelial barrier function is still poorly understood. This study aimed to determine whether RhoA, RhoB and RhoC have overlapping or distinct roles in barrier function and permeability in resting and activated endothelium.

View Article and Find Full Text PDF

Endothelial barrier function is carefully controlled to protect tissues from edema and damage inflicted by extravasated leukocytes. RhoGTPases, in conjunction with myriad regulatory proteins, exert both positive and negative effects on the endothelial barrier integrity. Precise knowledge about the relevant mechanisms is currently fragmented and we therefore performed a comprehensive analysis of endothelial barrier regulation by RhoGTPases and their regulators.

View Article and Find Full Text PDF

Background: Azathioprine and mercaptopurine (MP) are effective in treating patients with inflammatory bowel disease (IBD). Immunosuppressive effects of thiopurines involve T-cell apoptosis after inhibition of GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1). This study aimed to assess whether expression and activity of Rac1 or phosphorylated ezrin-radixin-moesin (pERM) in patients with IBD could provide a useful biomarker for the pharmacodynamic thiopurine effect and might be related to clinical effectiveness.

View Article and Find Full Text PDF

Aims: Impairment of the endothelial barrier leads to microvascular breakdown in cardiovascular disease and is involved in intraplaque haemorrhaging and the progression of advanced atherosclerotic lesions that are vulnerable to rupture. The exact mechanism that regulates vascular integrity requires further definition. Using a microarray screen for angiogenesis-associated genes during murine embryogenesis, we identified thrombospondin type I domain 1 (THSD1) as a new putative angiopotent factor with unknown biological function.

View Article and Find Full Text PDF

Background: The mechanisms causing increased endothelial permeability after cardiopulmonary bypass (CPB) have not been elucidated. Using a bioassay for endothelial barrier function, we investigated whether endothelial hyperpermeability is associated with alterations in plasma endothelial activation and adhesion markers and can be attenuated by the use of pulsatile flow during CPB.

Methods: Patients undergoing cardiac surgery were randomized to non-pulsatile (n=20) or pulsatile flow CPB (n=20).

View Article and Find Full Text PDF

Background: Endothelial cells (EC) guard vascular functions by forming a dynamic barrier throughout the vascular system that sensitively adapts to 'classical' biomechanical forces, such as fluid shear stress and hydrostatic pressure. Alterations in gravitational forces might similarly affect EC integrity, but remain insufficiently studied.

Methods: In an unique approach, we utilized Electric Cell-substrate Impedance Sensing (ECIS) in the gravity-simulators at the European Space Agency (ESA) to study dynamic responses of human EC to simulated micro- and hyper-gravity as well as to classical forces.

View Article and Find Full Text PDF

Rho kinase mediates the effects of inflammatory permeability factors by increasing actomyosin-generated traction forces on endothelial adherens junctions, resulting in disassembly of intercellular junctions and increased vascular leakage. In vitro, this is accompanied by the Rho kinase-driven formation of prominent radial F-actin fibers, but the in vivo relevance of those F-actin fibers has been debated, suggesting other Rho kinase-mediated events to occur in vascular leak. Here, we delineated the contributions of the highly homologous isoforms of Rho kinase (ROCK1 and ROCK2) to vascular hyperpermeability responses.

View Article and Find Full Text PDF

Background: Tissue edema and endothelial barrier dysfunction as observed in sepsis and acute lung injury carry high morbidity and mortality, but currently lack specific therapy. In a recent case report, we described fast resolution of pulmonary edema on treatment with the tyrosine kinase inhibitor imatinib through an unknown mechanism. Here, we explored the effect of imatinib on endothelial barrier dysfunction and edema formation.

View Article and Find Full Text PDF

Background: Angiopoietin-2 (Ang-2) is associated with lung injury in ALI/ARDS. As endothelial activation by thrombin plays a role in the permeability of acute lung injury and Ang-2 may modulate the kinetics of thrombin-induced permeability by impairing the organization of vascular endothelial (VE-)cadherin, and affecting small Rho GTPases in human pulmonary microvascular endothelial cells (HPMVECs), we hypothesized that Ang-2 acts as a sensitizer of thrombin-induced hyperpermeability of HPMVECs, opposed by Ang-1.

Methodology/principal Findings: Permeability was assessed by measuring macromolecule passage and transendothelial electrical resistance (TEER).

View Article and Find Full Text PDF

A hallmark of many, sometimes life-threatening, inflammatory diseases and disorders is vascular leakage. The extent and severity of vascular leakage is broadly mediated by the integrity of the endothelial cell (EC) monolayer, which is in turn governed by three major interactions: cell-cell and cell-substrate contacts, soluble mediators, and biomechanical forces. A potentially critical but essentially uninvestigated component mediating these interactions is the stiffness of the substrate to which the endothelial monolayer is adherent.

View Article and Find Full Text PDF

By using complementary in vitro and ex vivo approaches, we show that the risk allele (Y153H) of the pre-eclampsia susceptibility gene STOX1 negatively regulates trophoblast invasion by upregulation of the cell-cell adhesion protein alpha-T-catenin (CTNNA3). This is effectuated at the crucial epithelial-mesenchymal transition of proliferative into invasive extravillous trophoblast. This STOX1-CTNNA3 interaction is direct and includes Akt-mediated phosphorylated control of nucleo-cytoplasmic shuttling and ubiquitin-mediated degradation as shared with the FOX multigene family.

View Article and Find Full Text PDF

Pre-eclampsia and late-onset Alzheimer's disease (LOAD) share no clinical features. In contrast to these clinical dissimilarities, striking parallels exist between the (epi)genetic features associated with pre-eclampsia and LOAD for the genes located on 10q22. The parallels in identity between the 10q22 genes involved and active in the organs (placenta, brain) primarily affected in the respective diseases led us to explore, if the pre-eclampsia susceptibility gene STOX1 is functionally involved in LOAD.

View Article and Find Full Text PDF

Increased formation of the reactive dicarbonyl compound methylglyoxal (MGO) and MGO-derived advanced glycation end products (AGEs) seems to be implicated in endothelial dysfunction and the development of diabetic vascular complications. MGO reacts with arginine residues in proteins to generate the major glycated adducts 5-hydro-5-methylimidazolone (MG-H1) and argpyrimidine (AP). We investigated whether the free forms of these adducts contribute to vascular cell dysfunction by inhibition of endothelial nitric oxide synthase (eNOS).

View Article and Find Full Text PDF

Aims/hypothesis: Referred to as CCN, the family of growth factors consisting of cystein-rich protein 61 (CYR61, also known as CCN1), connective tissue growth factor (CTGF, also known as CCN2), nephroblastoma overexpressed gene (NOV, also known as CCN3) and WNT1-inducible signalling pathway proteins 1, 2 and 3 (WISP1, -2 and -3; also known as CCN4, -5 and -6) affects cellular growth, differentiation, adhesion and locomotion in wound repair, fibrotic disorders, inflammation and angiogenesis. AGEs formed in the diabetic milieu affect the same processes, leading to diabetic complications including diabetic retinopathy. We hypothesised that pathological effects of AGEs in the diabetic retina are a consequence of AGE-induced alterations in CCN family expression.

View Article and Find Full Text PDF

Free fatty acids may create a state of continuous and progressive damaging to the vascular wall manifested by endothelial dysfunction. In this study we determine the mechanisms by which fatty acids palmitate (C16:0) and oleate (C18:1) affect intracellular long chain acyl-CoA (LCAC) content, energy metabolism, cell survival and proliferation and activation of NF-kappaB in cultured endothelial cells. A 48-h exposure of human umbilical vein endothelial cells (HUVEC) to 0.

View Article and Find Full Text PDF