Publications by authors named "Bezouskova S"

Recent studies documented that several processes in filamentous fungi are connected with microsomal enzyme activities. In this work, microsomal subproteomes of Pleurotus ostreatus were analyzed by two-dimensional (2-D) polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis. To assess proteome dynamics, microsomal proteins were isolated from fungal cultures after 7 and 12 days of cultivation.

View Article and Find Full Text PDF

We studied the early stages of pellicle formation by Mycobacterium smegmatis on the surface of a liquid medium [air-liquid interface (A-L)]. Using optical and scanning electron microscopy, we showed the formation of a compact biofilm pellicle from micro-colonies over a period of 8-30 h. The cells in the pellicle changed size and cell division pattern during this period.

View Article and Find Full Text PDF

We studied the impact of a sublethal concentration of erythromycin on the fitness and proteome of a continuously cultivated population of Escherichia coli. The development of resistance to erythromycin in the population was followed over time by the gradient plate method and minimum inhibitory concentration (MIC) measurements. We measured the growth rate, standardized efficiency of synthesis of radiolabeled proteins, and translation accuracy of the system.

View Article and Find Full Text PDF

Streptomycetes, soil-dwelling mycelial bacteria, can colonise surface of organic soil debris and soil particles. We analysed the effects of two different inert surfaces, glass and zirconia/silica, on the growth and antibiotic production in Streptomyces granaticolor. The surfaces used were in the form of microbeads and were surrounded by liquid growth media.

View Article and Find Full Text PDF

Silent information regulators are NAD(+)-dependent enzymes that display differential specificity toward acetylated substrates. This report provides first evidence for deacetylation activity of CobB1 in Streptomyces coelicolor. The protein is highly conserved in streptomycetes.

View Article and Find Full Text PDF

The glass beads cultivation system developed in our laboratory for physiological studies of filamentous microorganisms supports differentiation and allows complete recovery of bacterial colonies and their natural products from cultivation plates. Here, we used this system to study the global effect of ppk gene disruption in Streptomyces lividans. The ppk encoding the enzyme polyphosphate kinase (P) catalyses the reversible polymerisation of gamma phosphate of ATP to polyphosphates.

View Article and Find Full Text PDF

The occurrence of phosphorylated proteins in ribosomes of Streptomyces coelicolor was investigated. Little is known about which biological functions these posttranslational modifications might fulfil. A protein kinase associated with ribosomes phosphorylated six ribosomal proteins of the small subunit (S3, S4, S12, S13, S14 and S18) and seven ribosomal proteins of the large subunit (L2, L3, L7/L12, L16, L17, L23 and L27).

View Article and Find Full Text PDF

We present the results of analysis of membrane phosphoproteomes from individual morphological stages of Streptomyces coelicolor that reflect developmentally dependent heterogeneity and phosphorylation of intrinsic and externally added purified Strepomyces aureofaciens EF-Tu. Fast growing nonpathogenic Mycobacterium smegmatis was used as a non-differentiating actinomycetes comparative model. Streptomycetes membrane fraction was found to contain protein kinase(s) catalyzing phosphorylation of both its own and an externally added EF-Tu, whereas Mycobacterium membrane fraction contains protein kinase phosphorylating only its own EF-Tu.

View Article and Find Full Text PDF

Monitoring the external environment and responding to its changes are essential for the survival of all living organisms. The transmission of extracellular signals in prokaryotes is mediated mainly by two-component systems. In addition, genomic analyses have revealed that many bacteria contain eukaryotic-type Ser/Thr protein kinases.

View Article and Find Full Text PDF

In vitro phosphorylation of EF-Tu was shown in cell-free extract from dormant spores of Streptomyces coelicolor by a protein kinase present in spores. EF-Tu phosphorylation was observed on both intrinsic S. coelicolor factor and externally added purified EF-Tu from S.

View Article and Find Full Text PDF

Restricting bacterial growth by iron-chelating proteins that reduce iron availability in mucosal secretions and body fluids belongs to basic mechanisms of innate immunity. Most pathogens and commensals thus developed gene regulons responding to iron concentration and encoding iron acquisition systems and genes involved in host colonization and virulence. Here, we analyzed the steady-state composition of the iron-regulated proteome and transcriptome of an invasive serogroup C clinical isolate of Neisseria meningitidis.

View Article and Find Full Text PDF

Dormant aerial spores of Streptomyces granaticolor contain pre-existing pool of mRNA and active ribosomes for rapid translation of proteins required for earlier steps of germination. Activated spores were labeled for 30 min with [35S]methionine/cysteine in the presence or absence of rifamycin (400 microg/ml) and resolved by two-dimensional electrophoresis. About 320 proteins were synthesized during the first 30 min of cultivation at the beginning of swelling, before the first DNA replication.

View Article and Find Full Text PDF

The capacity of adenylate cyclase toxin (ACT) to penetrate into target cells depends on post-translational fatty-acylation by the acyltransferase CyaC, which can palmitoylate the conserved lysines 983 and 860 of ACT. Here, the in vivo acylating capacity of a set of mutated CyaC acyltransferases was characterized by two-dimensional gel electrophoresis and mass spectrometric analyses of the ACT product. Substitutions of the potentially catalytic serine 20 and histidine 33 residues ablated acylating activity of CyaC.

View Article and Find Full Text PDF

Protein kinases can be classified into two main superfamilies on the basis of their sequence similarity and substrate specificity. The protein His kinase superfamily which autophosphorylate a His residue, and superfamily Ser/Thr and Tyr protein kinases, which phosphorylate Ser, Thr or Tyr residues. During the last years genes encoding Ser/Thr protein kinases have been identified in several microorganisms.

View Article and Find Full Text PDF

A shift down in temperature causes in Streptomyces aureofaciens a transient repression of polypeptide synthesis. During the acclimation phase 32 proteins were synthesized. The addition of tetracycline (200 microg/ml) to cells from exponential phase of growth leads to induction of 27 novel proteins and 17 upregulated proteins migrated in 2-D gel as proteins expressed upon cold shock.

View Article and Find Full Text PDF

The Bordetella pertussis RTX (repeat in toxin family protein) adenylate cyclase toxin-hemolysin (ACT) acquires biological activity upon a single amide-linked palmitoylation of the epsilon-amino group of lysine 983 (Lys983) by the accessory fatty-acyltransferase CyaC. However, an additional conserved RTX acylation site can be identified in ACT at lysine 860 (Lys860), and this residue becomes palmitoylated when recombinant ACT (r-Ec-ACT) is produced together with CyaC in Escherichia coli K12. We have eliminated this additional acylation site by replacing Lys860 of ACT with arginine, leucine, and cysteine residues.

View Article and Find Full Text PDF