Publications by authors named "Bezawit Getachew"

Polymer nanofibers hold promise in a wide range of applications owing to their diverse properties, flexibility, and cost effectiveness. In this study, we introduce a polymer nanofiber drawing process in a scanning electron microscope and focused ion beam (SEM/FIB) instrument with observation. We employed a nanometer-sharp tungsten needle and prepolymer microcapsules to enable nanofiber drawing in a vacuum environment.

View Article and Find Full Text PDF

Introduction: Immunization helps reduce morbidity and mortality attributable to severe vaccine-preventable childhood illnesses. However, vaccination coverage and the quality of immunization data remain challenging in Ethiopia. This has led to poor planning, suboptimal vaccination coverage, and the resurgence of vaccine-preventable disease outbreaks in under-immunized pocket areas.

View Article and Find Full Text PDF

Electrically conductive membranes are a promising avenue to reduce water treatment costs due to their ability to minimize the detrimental impact of fouling, to degrade contaminants, and to provide other additional benefits during filtration. Here, we demonstrate the facile and low-cost fabrication of electrically conductive membranes using laser-reduced graphene oxide (GO). In this method, GO is filtered onto a poly(ether sulfone) membrane support before being pyrolyzed via laser into a conductive film.

View Article and Find Full Text PDF

The need to reduce and eliminate exposure to the toxic contaminant lead (Pb) from drinking water calls for advances in cheap and low-footprint sensing technologies such as stripping voltammetry. This study examines the performance of laser-induced graphene (LIG) electrodes from polyimide (PI) and polyethersulfone (PES) precursors in anodic stripping voltammetry of Pb(II). Despite their similar electrochemical properties and conductivity, as characterized by electrochemical impedance spectroscopy and two-point conductivity, respectively, subtle differences in physical and chemical properties, as measured by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively, lead to PI-LIG electrodes exhibiting higher sensitivity than PES-LIG electrodes.

View Article and Find Full Text PDF

Direct lasing of polymeric membranes to form laser induced graphene (LIG) offers a scalable and potentially cheaper alternative for the fabrication of electrically conductive membranes. However, the high temperatures induced during lasing can deform the substrate polymer, altering existing micro- and nanosized features that are crucial for a membrane's performance. Here, we demonstrate how sequential infiltration synthesis (SIS) of alumina, a simple solvent-free process, stabilizes polyethersulfone (PES) membranes against deformation above the polymers' glass transition temperature, enabling the formation of LIG without any changes to the membrane's underlying pore structure.

View Article and Find Full Text PDF

Steam-cracker tar (SCT) is a by-product of ethylene production that is in massive quantities globally (>150 × 10 tons per year). With few useful applications, the production of unwanted SCT leads to the need for its costly disposal or burning at the boiler plant. The discovery of new uses for SCT would therefore bring both economic and environmental benefits, although, to date, efforts toward employing SCT in diverse applications have been limited, and progress is further hampered by a lack of understanding of the material itself.

View Article and Find Full Text PDF

Microscale damages to membranes used in large-scale filtration processes for water treatment can result in severe degradation of product water quality. One promising technology to address this issue is in situ healing of compromised membranes via healing agents that are added to the feed side of a membrane system and seal the defect site because of increased hydraulic drag through damage site during filtration. We herein introduce an improved in situ membrane healing method using amine-functionalized silica microparticles that is effective under varying operating conditions, overcoming limitations faced by previous healing agents such as chitosan agglomerates.

View Article and Find Full Text PDF

Damages to water filtration membranes during installation and operation are known to cause detrimental loss of the product water quality. Membranes that have the ability to self-heal would recover their original rejection levels autonomously, bypassing the need for costly integrity monitoring and membrane replacement practices. Herein, we fabricated hydrogel pore-filled membranes via in situ graft polymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) onto microporous poly(ether sulfone) (PES) substrates and successfully demonstrated their self-healing ability.

View Article and Find Full Text PDF