Publications by authors named "Beysen D"

Article Synopsis
  • RORA is a gene linked to the development and function of the cerebellum, and this study explores the largest group of individuals with RORA-related neurodevelopmental disorders (RORA-NDD).
  • The study involved 40 participants with various pathogenic variants of RORA, revealing a range of clinical features including developmental and intellectual disabilities, as well as cerebellar symptoms that can vary in onset and severity.
  • Findings indicate that certain missense variants are associated with more severe cerebellar issues, and common elements of RORA-NDD include developmental disabilities, cerebellar symptoms, and different types of myoclonic epilepsy.
View Article and Find Full Text PDF
Article Synopsis
  • * The condition is characterized by microcephaly, short stature, and hypotonia, and may be one of the most common single-gene causes of neurodevelopmental issues.
  • * Identifying affected individuals can be done through recognizable facial features, which is important for diagnosis in areas with limited access to advanced genetic testing.
View Article and Find Full Text PDF

Background: Cerebral palsy (CP) is the most frequent cause of motor impairment in children. Although perinatal asphyxia was long considered to be the leading cause of CP, recent studies demonstrate its causation in only around one in 10 individuals with CP. Instead, genetic causes are increasingly demonstrated.

View Article and Find Full Text PDF

Background: Congenital myasthenic syndromes (CMS) are a group of genetic disorders characterized by impaired neuromuscular transmission. CMS typically present at a young age with fatigable muscle weakness, often with an abnormal response after repetitive nerve stimulation (RNS). Pharmacologic treatment can improve symptoms, depending on the underlying defect.

View Article and Find Full Text PDF

The calcium/calmodulin-dependent protein kinase type 2 (CAMK2) family consists of four different isozymes, encoded by four different genes-CAMK2A, CAMK2B, CAMK2G, and CAMK2D-of which the first three have been associated recently with neurodevelopmental disorders. CAMK2D is one of the major CAMK2 proteins expressed in the heart and has been associated with cardiac anomalies. Although this CAMK2 isoform is also known to be one of the major CAMK2 subtypes expressed during early brain development, it has never been linked with neurodevelopmental disorders until now.

View Article and Find Full Text PDF

Aromatic l-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive neurometabolic disorder caused by biallelic pathogenic variants in the gene; approximately 140 patients have been described worldwide. AADC deficiency is characterised by a combined deficiency of dopamine, serotonin, adrenaline and noradrenaline causing a highly variable phenotype with developmental delay, early-onset hypotonia, movement disorders and autonomic symptoms. We expand the phenotype of this neurometabolic disorder by reporting on a paediatric patient with a mild phenotype with atypical exercise-induced dystonic crises, a feature that has not been described in AADC deficiency up till now.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research highlights the role of missense and truncating variants in the CLCN4 gene, affecting chloride/proton exchange and leading to neurocognitive issues in both genders.
  • A comprehensive database was created from 90 families, identifying 41 unique and 18 recurrent CLCN4 variants, with detailed clinical data collected from 43 families.
  • Functional studies in Xenopus oocytes revealed that 25% of the variants displayed loss-of-function characteristics, while others led to gain-of-function issues, indicating the complexities of assessing genetic pathogenicity and suggesting a need for better patient care and further research.
View Article and Find Full Text PDF

Familial primary desminopathies are usually autosomal dominantly inherited and present at the age of 20 to 40 years with progressive muscle weakness and atrophy, cardiomyopathy, and cardiac arrhythmias. Cardiac features may precede the muscular weakness. Here, we report the rare case of two siblings presenting with a desminopathy at pediatric age, due to homozygous nonsense variations (c.

View Article and Find Full Text PDF

Pathogenic missense variants in GRIN2A and GRIN2B may result in gain or loss of function (GoF/LoF) of the N-methyl-D-aspartate receptor (NMDAR). This observation gave rise to the hypothesis of successfully treating GRIN-related disorders due to LoF variants with co-agonists of the NMDAR. In this respect, we describe a retrospectively collected series of ten individuals with GRIN2A- or GRIN2B-related disorders who were treated with L-serine, each within an independent n-of-1 trial.

View Article and Find Full Text PDF

Cerebral palsy (CP) is a non-progressive neurodevelopmental disorder characterized by motor impairments, often accompanied by co-morbidities such as intellectual disability, epilepsy, visual and hearing impairment and speech and language deficits. Despite the established role of hypoxic-ischemic injury in some CP cases, several studies suggest that birth asphyxia is actually an uncommon cause, accounting for <10% of CP cases. For children with CP in the absence of traditional risk factors, a genetic basis to their condition is increasingly suspected.

View Article and Find Full Text PDF

In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death.

View Article and Find Full Text PDF

NEDD4L encodes an ubiquitin ligase which is expressed in the cortex and ventricular zone of the fetal brain. Missense variants in NEDD4L have been reported in nine patients with periventricular nodular heterotopia (PNH), polymicrogyria, cleft palate, and syndactyly. All reported variants are located in the HECT domain, causing deregulation of signaling pathways, including the AKT/mTOR pathway.

View Article and Find Full Text PDF

Mutations in the chromatin regulator gene BRPF1 were recently associated with the Intellectual Developmental Disorder With Dysmorphic Facies And Ptosis (IDDDFP). Up till now, clinical data of 22 patients are reported. Besides intellectual disability (ID), ptosis and blepharophimosis are frequent findings, with refraction problems, amblyopia and strabism as other reported ophthalmological features.

View Article and Find Full Text PDF

We describe seven patients with KDM6A (located on Xp11.3 and encodes UTX) mutations, a rare cause of Kabuki syndrome (KS2, MIM 300867) and report, for the first time, germ-line missense and splice-site mutations in the gene. We demonstrate that less than 5% cases of Kabuki syndrome are due to KDM6A mutations.

View Article and Find Full Text PDF

Genomic disorders are often caused by recurrent copy number variations (CNVs), with nonallelic homologous recombination (NAHR) as the underlying mechanism. Recently, several microhomology-mediated repair mechanisms--such as microhomology-mediated end-joining (MMEJ), fork stalling and template switching (FoSTeS), microhomology-mediated break-induced replication (MMBIR), serial replication slippage (SRS), and break-induced SRS (BISRS)--were described in the etiology of non-recurrent CNVs in human disease. In addition, their formation may be stimulated by genomic architectural features.

View Article and Find Full Text PDF

To date, the contribution of disrupted potentially cis-regulatory conserved non-coding sequences (CNCs) to human disease is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted. As a model for monogenic disease we studied the involvement of genetic changes of CNCs in the cis-regulatory domain of FOXL2 in blepharophimosis syndrome (BPES). Fifty-seven molecularly unsolved BPES patients underwent high-resolution copy number screening and targeted sequencing of CNCs.

View Article and Find Full Text PDF

The FOXL2 gene is one of 10 forkhead genes, the mutations of which lead to human developmental disorders, often with ocular manifestations. Mutations in FOXL2 are known to cause blepharophimosis syndrome (BPES), an autosomal dominant eyelid malformation associated (type I) or not (type II) with ovarian dysfunction, leading to premature ovarian failure (POF). In addition, a few mutations have been described in patients with isolated POF.

View Article and Find Full Text PDF

Blepharophimosis syndrome (BPES) is caused by loss-of-function mutations in the single-exon forkhead transcription factor gene FOXL2 and by genomic rearrangements of the FOXL2 locus. Here, we focus on 92 new intragenic FOXL2 mutations, 34 of which are novel. Specifically, we found 10 nonsense mutations (11%), 13 missense mutations (14%), 40 deletions or insertions leading to a frameshift (43%), and 29 in-frame changes (32%), of which 28 (30%) lead to a polyalanine expansion.

View Article and Find Full Text PDF

Mutations of the FOXL2 gene have been shown to cause blepharophimosis syndrome (BPES), characterized by an eyelid malformation associated with premature ovarian failure or not. Recently, polyalanine expansions and truncating FOXL2 mutations have been shown to lead to protein mislocalization, aggregation and altered transactivation. Here, we study the molecular consequences of 17 naturally occurring FOXL2 missense mutations.

View Article and Find Full Text PDF

"Autosomal dominant retinitis pigmentosa" (adRP) refers to a genetically heterogeneous group of retinal dystrophies, in which 54% of all cases can be attributed to 17 disease loci. Here, we describe the localization and identification of the photoreceptor cell-specific nuclear receptor gene NR2E3 as a novel disease locus and gene for adRP. A heterozygous mutation c.

View Article and Find Full Text PDF

The blepharophimosis syndrome (BPES) is an autosomal dominant developmental disorder in which craniofacial/eyelid malformations are associated (type I) or not (type II) with premature ovarian failure (POF). Mutations in the FOXL2 gene, encoding a forkhead transcription factor, are responsible for both types of BPES. Heterozygous polyalanine expansions of +10 residues (FOXL2-Ala24) account for 30% of FOXL2 mutations and are fully penetrant for the eyelid phenotype.

View Article and Find Full Text PDF

Recently the molecular basis of the blepharophimosis-ptosis-epicanthus inversus-syndrome (BPES), an autosomal dominant developmental disorder of the eyelids and ovary, was elucidated. This syndromic form of premature ovarian failure (POF) is caused by mutations in the gene encoding the forkhead transcription factor FOXL2. In this manuscript we review the clinical features of BPES, its molecular basis, the structural and functional characteristics of the FOXL2 gene and protein, and known animal models.

View Article and Find Full Text PDF

The expression of a gene requires not only a normal coding sequence but also intact regulatory regions, which can be located at large distances from the target genes, as demonstrated for an increasing number of developmental genes. In previous mutation studies of the role of FOXL2 in blepharophimosis syndrome (BPES), we identified intragenic mutations in 70% of our patients. Three translocation breakpoints upstream of FOXL2 in patients with BPES suggested a position effect.

View Article and Find Full Text PDF