Publications by authors named "Beverly Montalbano"

To better understand the effect of temperature on mycotoxin biosynthesis, RNA-Seq technology was used to profile the Aspergillus flavus transcriptome under different temperature conditions. This approach allowed us to quantify transcript abundance for over 80% of fungal genes including 1153 genes that were differentially expressed at 30 and 37 °C. Eleven of the 55 secondary metabolite clusters were upregulated at the lower temperature, including aflatoxin biosynthesis genes, which were among the most highly upexpressed genes.

View Article and Find Full Text PDF

Aflatoxins, the most toxic and carcinogenic family of fungal secondary metabolites, are frequent contaminants of foods intended for human consumption. Previous studies showed that formation of G-group aflatoxins (AFs) from O-methylsterigmatocystin (OMST) by certain Aspergillus species involves oxidation by the cytochrome P450 monooxygenases, OrdA (AflQ) and CypA (AflU). However, some of the steps in the conversion have not yet been fully defined.

View Article and Find Full Text PDF

Genetic exchange by asexual filamentous fungi is presumed to be limited to isolates in the same vegetative compatibility group (VCG). To evaluate genetic isolation of Aspergillus flavus due to vegetative incompatibility, three gene regions were chosen that contained closely spaced nucleotides that were polymorphic among some of the six VCGs examined. A member of each VCG was collected from five regions across the southern United States.

View Article and Find Full Text PDF

Aflatoxin-producing Aspergillus species were isolated from soil samples from ten different regions within Thailand. Aspergillus flavus was present in all of the soil samples. Unlike previous studies, we found no A.

View Article and Find Full Text PDF

Biosynthesis of the toxic and carcinogenic aflatoxins by the fungus Aspergillus flavus is a complicated process involving more that 27 enzymes and regulatory factors encoded by a clustered group of genes. Previous studies found that three enzymes, encoded by verA, ver-1, and aflY, are required for conversion of versicolorin A (VA), to demethylsterigmatocystin. We now show that a fourth enzyme, encoded by the previously uncharacterized gene, aflX (ordB), is also required for this conversion.

View Article and Find Full Text PDF

Disruption of the aflatoxin biosynthesis cluster gene aflY (hypA) gave Aspergillus parasiticus transformants that accumulated versicolorin A. This gene is predicted to encode the Baeyer-Villiger oxidase necessary for formation of the xanthone ring of the aflatoxin precursor demethylsterigmatocystin.

View Article and Find Full Text PDF

Production of aflatoxins (AF) by Aspergillus flavus and A. parasiticus is known to occur only at acidic pH. Although typical A.

View Article and Find Full Text PDF

Aflatoxin contamination of foods and feeds is a world-wide agricultural problem. Aflatoxin production requires expression of the biosynthetic pathway regulatory gene, aflR, which encodes a Cys6Zn2-type DNA-binding protein. Homologs of aflR from Aspergillus nomius, bombycis, parasiticus, flavus, and pseudotamarii were compared to investigate the molecular basis for variation among aflatoxin-producing taxa in the regulation of aflatoxin production.

View Article and Find Full Text PDF

PksA catalyzes the formation of the polyketide backbone necessary for aflatoxin biosynthesis. Based on reporter assays and sequence comparisons of the nor1-pksA intergenic region in different aflatoxin-producing Aspergillus species, cis-acting elements for the aflatoxin pathway-specific regulatory protein, AflR, and the global-acting regulatory proteins BrlA and PacC are involved in pksA promoter activity.

View Article and Find Full Text PDF