Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes the S-adenosylmethionine (SAM)-dependent methylation of inorganic arsenic (iAs), yielding monomethyl‑arsenic (MAs) and dimethyl‑arsenic (DMAs) metabolites. The formation of DMAs in this pathway is considered a key mechanism for iAs detoxification. Availability of SAM for iAs methylation depends in part on dietary intake of folate.
View Article and Find Full Text PDFVirus-induced cell death is a key contributor to COVID-19 pathology. Cell death induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is well studied in myeloid cells but less in its primary host cell type, angiotensin-converting enzyme 2 (ACE2)-expressing human airway epithelia (HAE). SARS-CoV-2 induces apoptosis, necroptosis, and pyroptosis in HAE organotypic cultures.
View Article and Find Full Text PDFInterleukin (IL)-1β is an apex proinflammatory cytokine produced in response to tissue injury and infection. The output of IL-1β from monocytes and macrophages is regulated not only by transcription and translation but also post-translationally. Release of the active cytokine requires activation of inflammasomes, which couple IL-1β post-translational proteolysis with pyroptosis.
View Article and Find Full Text PDFThe NLRP3 inflammasome is essential for caspase-1 activation and the release of interleukin (IL)-1β, IL-18, and gasdermin-D in myeloid cells. However, research on species-specific NLRP3's physiological impact is limited. We engineer mice with the human NLRP3 gene, driven by either the human or mouse promoter, via syntenic replacement at the mouse Nlrp3 locus.
View Article and Find Full Text PDFThe NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a central regulator of innate immunity, essential for processing and release of interleukin-1 and pyroptotic cell death. As endogenous NLRP3 activating triggers are hallmarks of many human chronic inflammatory diseases, inhibition of NLRP3 has emerged as a therapeutic target. Here we identify NDT-19795 as a novel carboxylic acid-containing NLRP3 activation inhibitor in both human and mouse monocytes and macrophages.
View Article and Find Full Text PDFEnviron Health Perspect
December 2023
Background: Chronic exposure to inorganic arsenic (iAs) has been associated with type 2 diabetes (T2D). However, potential sex divergence and the underlying mechanisms remain understudied. iAs is not metabolized uniformly across species, which is a limitation of typical exposure studies in rodent models.
View Article and Find Full Text PDFAlthough mice are widely used to study adverse effects of inorganic arsenic (iAs), higher rates of iAs methylation in mice than in humans may limit their utility as a model organism. A recently created 129S6 mouse strain in which the Borcs7/As3mt locus replaces the human BORCS7/AS3MT locus exhibits a human-like pattern of iAs metabolism. Here, we evaluate dosage dependency of iAs metabolism in humanized (Hs) mice.
View Article and Find Full Text PDFAngiotensin-converting enzyme 2 (ACE2), part of the renin-angiotensin system (RAS), serves as an entry point for SARS-CoV-2, leading to viral proliferation in permissive cell types. Using mouse lines in which the Ace2 locus has been humanized by syntenic replacement, we show that regulation of basal and interferon induced ACE2 expression, relative expression levels of different ACE2 transcripts, and sexual dimorphism in ACE2 expression are unique to each species, differ between tissues, and are determined by both intragenic and upstream promoter elements. Our results indicate that the higher levels of expression of ACE2 observed in the lungs of mice relative to humans may reflect the fact that the mouse promoter drives expression of ACE2 in populous airway club cells while the human promoter drives expression in alveolar type 2 (AT2) cells.
View Article and Find Full Text PDFBackground: Type 2 endotype asthma is driven by IL-4 and IL-13 signaling via IL-4Ra, which is highly expressed on airway epithelium, airway smooth muscle, and immunocytes in the respiratory mucosa, suggesting potential advantages of an inhalable antagonist. Lipocalin 1 (Lcn1), a 16 kDa protein abundant in human periciliary fluid, has a robust drug-like structure well suited to protein engineering, but it has never been used to make an inhaled Anticalin protein therapeutic.
Objectives: We sought to reengineer Lcn1 into an inhalable IL-4Ra antagonist and assess its pharmacodynamic/kinetic profile.
Background A beneficial role for prostanoids in hypertension is suggested by clinical studies showing nonsteroidal anti-inflammatory drugs, which block the production of all prostanoids, cause sodium retention and exacerbate hypertension. Among prostanoids, prostaglandin E2 and its E-prostanoid receptor 4 receptor (EP4R) have been implicated in blood pressure control. Our previous study found that conditional deletion of EP4R from all tissues in adult mice exacerbates angiotensin II-dependent hypertension, suggesting a powerful effect of EP4R to resist blood pressure elevation.
View Article and Find Full Text PDFOzone (O) is a prevalent air pollutant causing lung inflammation. Previous studies demonstrate that O oxidizes lipids, such as cholesterol, in the airway to produce oxysterols, such as secosterol A (SecoA), which are electrophiles that are capable of forming covalent linkages preferentially with lysine residues and that consequently modify protein function. The breadth of proteins modified by this oxysterol as well as the biological consequences in the lung are unknown.
View Article and Find Full Text PDFEnviron Health Perspect
August 2020
Background: Chronic exposure to inorganic arsenic (iAs) is a significant public health problem. Methylation of iAs by arsenic methyltransferase (AS3MT) controls iAs detoxification and modifies risks of iAs-induced diseases. Mechanisms underlying these diseases have been extensively studied using animal models.
View Article and Find Full Text PDFTo investigate the role of glutathione transferases (GSTs) in the metabolism of inorganic arsenic (iAs), we compared the disposition of iAs and its metabolites in wild-type mice and mice lacking genes encoding GST-P, -M and -T after exposure to 100 ppb iAs in drinking water. We found no differences between the two genotypes in the concentrations of total arsenic or arsenic species in urine, liver, and kidneys. No genotype-dependent differences were found in proportions of arsenicals in the tissues, and only small differences were observed in the urine.
View Article and Find Full Text PDFStudies have suggested that abrogated expression of detoxification enzymes, UGT2B15 and UGT2B17, are associated with prostate tumour risk and progression. We investigated the role of EGF on the expression of these enzymes since it interacts with signalling pathways to also affect prostate tumour progression and is additionally associated with decreased DNA methylation. The expression of , methyltransferases, and was assessed in prostate cancer cells (LNCaP) treated with EGF, an EGFR inhibitor PD16893, and the methyltransferase inhibitor, 5-azacytidine, respectively.
View Article and Find Full Text PDFThe mounting threat of multi-drug-resistant (MDR) bacteria places a tremendous strain on the antimicrobial clinical arsenal, forcing physicians to revert to near-obsolete antibiotics to treat otherwise intractable infections. Antibiotic adjuvant therapy has emerged as a viable alternative to the development of novel antimicrobial agents. This method uses combinations of an existing antibiotic and a non-antimicrobial small molecule, where the combination either breaks drug resistance or further potentiates antibiotic activity.
View Article and Find Full Text PDFInfections caused by multidrug-resistant (MDR) bacteria, particularly Gram-negative bacteria, are an escalating global health threat. Often clinicians are forced to administer the last-resort antibiotic colistin; however, colistin resistance is becoming increasingly prevalent, giving rise to the potential for a situation in which there are no treatment options for MDR Gram-negative infections. The development of adjuvants that circumvent bacterial resistance mechanisms is a promising orthogonal approach to the development of new antibiotics.
View Article and Find Full Text PDFEnvironmental and endogenous electrophiles cause tissue damage through their high reactivity with endogenous nucleophiles such as DNA, proteins, and lipids. Protection against damage is mediated by glutathione (GSH) conjugation, which can occur spontaneously or be facilitated by the glutathione S-transferase (GST) enzymes. To determine the role of GST enzymes in protection against electrophiles as well as the role of specific GST families in mediating this protection, we exposed mutant mouse lines lacking the GSTP, GSTM, and/or GSTT enzyme families to the model electrophile acrylamide, a ubiquitous dietary contaminant known to cause adverse effects in humans.
View Article and Find Full Text PDFThe role of lipids in inflammasome activation remains underappreciated. The phospholipid, platelet-activating factor (PAF), exerts multiple physiological functions by binding to a G protein-coupled seven-transmembrane receptor (PAFR). PAF is associated with a number of inflammatory disorders, yet the molecular mechanism underlying its proinflammatory function remains to be fully elucidated.
View Article and Find Full Text PDFAntibiotic resistance has significantly increased since the beginning of the 21st century. Currently, the polymyxin colistin is typically viewed as the antibiotic of last resort for the treatment of multidrug resistant Gram-negative bacterial infections. However, increased colistin usage has resulted in colistin-resistant bacterial isolates becoming more common.
View Article and Find Full Text PDFBackground Prostaglandin E ( PGE ) is a major prostanoid with multiple actions that potentially affect blood pressure ( BP ). PGE acts through 4 distinct E-prostanoid ( EP ) receptor isoforms: EP 1 to EP 4. The EP 4 receptor ( EP 4R) promotes PGE -dependent vasodilation, but its role in the pathogenesis of hypertension is not clear.
View Article and Find Full Text PDFThe unique cell biology of Toll-like receptor 4 (TLR4) allows it to initiate two signal-transduction cascades: a signal dependent on the adaptors TIRAP (Mal) and MyD88 that begins at the cell surface and regulates proinflammatory cytokines, and a signal dependent on the adaptors TRAM and TRIF that begins in the endosomes and drives the production of type I interferons. Negative feedback circuits to limit TLR4 signals from both locations are necessary to balance the inflammatory response. We describe a negative feedback loop driven by autocrine-paracrine prostaglandin E (PGE) and the PGE receptor EP4 that restricted TRIF-dependent signals and the induction of interferon-β through the regulation of TLR4 trafficking.
View Article and Find Full Text PDF