Both insulin resistance (type II diabetes) and beta-amyloid (Abeta) oligomers are implicated in Alzheimer's disease (AD). Here, we investigate the role of Abeta oligomer-induced c-Jun N-terminal kinase (JNK) activation leading to phosphorylation and degradation of the adaptor protein insulin receptor substrate-1 (IRS-1). IRS-1 couples insulin and other trophic factor receptors to downstream kinases and neuroprotective signaling.
View Article and Find Full Text PDFThe rat amyloid-beta (Abeta) intracerebroventricular infusion can model aspects of Alzheimer's disease (AD) and has predicted efficacy of therapies such as ibuprofen and curcumin in transgenic mouse models. High density lipoprotein (HDL), a normal plasma carrier of Abeta, is used to attenuate Abeta aggregation within the pump, causing Abeta-dependent toxicity and cognitive deficits within 3 months. Our goal was to identify factors that might accelerate onset of Abeta-dependent deficits to improve efficiency and cost-effectiveness of model.
View Article and Find Full Text PDFCurcumin can reduce inflammation and neurodegeneration, but its chemical instability and metabolism raise concerns, including whether the more stable metabolite tetrahydrocurcumin (TC) may mediate efficacy. We examined the antioxidant, anti-inflammatory, or anti-amyloidogenic effects of dietary curcumin and TC, either administered chronically to aged Tg2576 APPsw mice or acutely to lipopolysaccharide (LPS)-injected wild-type mice. Despite dramatically higher drug plasma levels after TC compared with curcumin gavage, resulting brain levels of parent compounds were similar, correlating with reduction in LPS-stimulated inducible nitric-oxide synthase, nitrotyrosine, F2 isoprostanes, and carbonyls.
View Article and Find Full Text PDF