Temperature-responsive polymers are often characterized by an abrupt change in the degree of swelling brought about by small changes in temperature. Polymers with a lower critical solution temperature (LCST) in particular, are important as drug and gene delivery vehicles. Drug molecules are taken up by the polymer in their solvent swollen state below their LCST.
View Article and Find Full Text PDFHydrophobic interactions often dominate the associative forces between biomacromolecules. A synthetic affinity reagent must be able to exploit and optimize these interactions. We describe synthesis of abiotic affinity reagents that sequester biomacromolecules with lipid-like domains.
View Article and Find Full Text PDFToxins delivered by envenomation, secreted by microorganisms, or unintentionally ingested can pose an immediate threat to life. Rapid intervention coupled with the appropriate antidote is required to mitigate the threat. Many antidotes are biological products and their cost, methods of production, potential for eliciting immunogenic responses, the time needed to generate them, and stability issues contribute to their limited availability and effectiveness.
View Article and Find Full Text PDFWe report a new material design concept for synthetic, thermally responsive poly(N-isopropylacrylamide)-based copolymer nanoparticle (NP) hydrogels, which protect proteins from thermal stress. The NP hydrogels bind and protect a target enzyme from irreversible activity loss upon exposure to heat but "autonomously" release the enzyme upon subsequent cooling of the solution. Incorporation of the optimized amount of negatively charged and hydrophobic comonomers to the NP hydrogels was key to achieve these desired functions.
View Article and Find Full Text PDFWe report here in adult rat viral vector mediate-gene knockdown in the primary sensory neurons and the associated cellular and behavior consequences. Self-complementary adeno-associated virus serotype 5 (AAV5) was constructed to express green fluorescent protein (GFP) and a small interfering RNA (siRNA) targeting mammalian target of rapamycin (mTOR). The AAV vectors were injected via an intrathecal catheter.
View Article and Find Full Text PDF