Publications by authors named "Beverley J Wilson"

Membrane traffic is an important regulator of cell migration through the endocytosis and recycling of cell surface receptors such as integrin heterodimers. Intracellular nanovesicles (INVs) are transport vesicles that are involved in multiple membrane trafficking steps, including the recycling pathway. The only known marker for INVs is tumor protein D54 (TPD54/TPD52L2), a member of the TPD52-like protein family.

View Article and Find Full Text PDF

Cell migration is a critical process that underpins a number of physiological and pathological contexts such as the correct functioning of the immune system and the spread of metastatic cancer cells. Central to this process are the Rho family of GTPases, which act as core regulators of cell migration. Rho GTPases are molecular switches that associate with lipid membranes and act to choreograph molecular events that underpin cell migration.

View Article and Find Full Text PDF

Cell migration is a vital process in development and disease, and while the mechanisms that control motility are relatively well understood on two-dimensional surfaces, the control of cell migration in three dimensions (3D) and in vivo has only recently begun to be understood. Vesicle trafficking pathways have emerged as a key regulatory element in migration and invasion, with the endocytosis and recycling of cell surface cargos, including growth factor and chemokine receptors, adhesion receptors and membrane-associated proteases, being of major importance. We highlight recent advances in our understanding of how endocytic trafficking controls the availability and local activity of these cargoes to influence the movement of cells in 3D matrix and in developing organisms.

View Article and Find Full Text PDF