The aim of the study was to investigate whether a Pro12Ala polymorphism in the peroxisome proliferator-activated receptor gamma 2 (PPAR γ 2) gene is associated with the progress of diabetic nephropathy in patients with type 1 diabetes. 197 Caucasian patients with type 1 diabetes and ethnically matched 151 normal healthy controls were genotyped for this polymorphism. Results showed that there were no significant differences in the frequencies of the genotypes and alleles of the polymorphism between groups.
View Article and Find Full Text PDFTranscriptional activity of connective tissue growth factor (CTGF) promoter in transfected HEK293 cells was determined by luciferase assays. Secreted CTGF in cultured human mesangial cells was measured by enzyme-linked immunosorbent assay (ELISA). CTGF in urine and plasma was also measured in 405 subjects with/without type 2 diabetes.
View Article and Find Full Text PDFJ Diabetes Complications
February 2011
Myo-inositol oxygenase (MIOX) is the first and rate-limiting enzyme in myo-inositol (MI) metabolism pathway. The increase in MIOX enzyme activity is in proportion to serum glucose concentrations and may be responsible for the MI depletion found in the diabetic complications. The aim was to investigate whether single nucleotide polymorphisms (SNPs) in the MIOX gene are associated with Type 1 diabetes mellitus (T1D) and its complications.
View Article and Find Full Text PDFThe aim of this study was to investigate whether high glucose induces aldose reductase (AKR1B1) expression through NFkappaB, which may contribute to the pathogenesis of diabetic nephropathy. 34 Caucasoid patients with type 1 diabetes were recruited; 20 nephropaths and 14 long-term uncomplicated subjects. Peripheral blood mononuclear cells (PBMCs) were cultured under normal or high glucose (25 mmol/l of d-glucose) with or without an aldose reductase inhibitor (ARI).
View Article and Find Full Text PDFThe expression of aldose reductase is tightly regulated by the transcription factor tonicity response element binding protein (TonEBP/NFAT5) binding to three osmotic response elements (OREs; OREA, OREB, and OREC) in the gene. The aim was to investigate the contribution of NFAT5 to the pathogenesis of diabetic nephropathy. Peripheral blood mononuclear cells (PBMCs) were isolated from the following subjects: 44 Caucasoid patients with type 1 diabetes, of whom 26 had nephropathy and 18 had no nephropathy after a diabetes duration of 20 years, and 13 normal healthy control subjects.
View Article and Find Full Text PDFObjective: Increased production of reactive oxygen species (ROS) in diabetes is thought to play a major role in the pathogenesis of diabetic microvascular complications such as nephropathy and retinopathy. The NAD(P)H oxidase complex is an important source of ROS in the vasculature. The p22 subunit is polymorphic with a C242T variant that changes histidine-72 for a tyrosine in the potential heme binding site, together with a A640G in the 3' untranslated region.
View Article and Find Full Text PDFIncreased flux of glucose through the polyol pathway may cause generation of excess reactive oxygen species (ROS), leading to tissue damage. Abnormalities in expression of enzymes that protect against oxidant damage may accentuate the oxidative injury. The expression of catalase (CAT), CuZn superoxide-dismutase (CuZnSOD), glutathione peroxidase (GPX), and Mn superoxide-dismutase (MnSOD) mRNA was quantified in peripheral blood mononuclear cells-obtained from 26 patients with type 1 diabetes and nephropathy, 15 with no microvascular complications after 20 years' duration of diabetes, and 10 normal healthy control subjects-that were exposed in vitro to hyperglycemia (HG) (31 mmol/l D-glucose).
View Article and Find Full Text PDF