Publications by authors named "Bevan Kai-Sheng Chung"

Various isoforms of invertases from prokaryotes, fungi, and higher plants has been expressed in Escherichia coli, and codon optimisation is a widely-adopted strategy for improvement of heterologous enzyme expression. Successful synthetic gene design for recombinant protein expression can be done by matching its translational elongation rate against heterologous host organisms via codon optimization. Amongst the various design parameters considered for the gene synthesis, codon context bias has been relatively overlooked compared to individual codon usage which is commonly adopted in most of codon optimization tools.

View Article and Find Full Text PDF

Summary: Codon optimization has been widely used for designing synthetic genes to improve their expression in heterologous host organisms. However, most of the existing codon optimization tools consider a single design criterion and/or implement a rather rigid user interface to yield only one optimal sequence, which may not be the best solution. Hence, we have developed Codon Optimization OnLine (COOL), which is the first web tool that provides the multi-objective codon optimization functionality to aid systematic synthetic gene design.

View Article and Find Full Text PDF

Cofactors, such as NAD(H) and NADP(H), play important roles in energy transfer within the cells by providing the necessary redox carriers for a myriad of metabolic reactions, both anabolic and catabolic. Thus, it is crucial to establish the overall cellular redox balance for achieving the desired cellular physiology. Of several methods to manipulate the intracellular cofactor regeneration rates, altering the cofactor specificity of a particular enzyme is a promising one.

View Article and Find Full Text PDF

The human interferon-gamma (IFN-γ) is a potential drug candidate for treating various diseases due to its immunomodulatory properties. The efficient production of this protein can be achieved through a popular industrial host, Chinese hamster ovary (CHO) cells. However, recombinant expression of foreign proteins is typically suboptimal possibly due to the usage of non-native codon patterns within the coding sequence.

View Article and Find Full Text PDF

Antibacterial drug discovery is moving from largely unproductive high-throughput screening of isolated targets in the past decade to revisiting old, clinically validated targets and drugs, and to classical black-box whole-cell screens. At the same time, due to the application of existing methods and the emergence of new high-throughput biology methods, we observe the generation of unprecedented qualities and quantities of genomic and other omics data on bacteria and their physiology. Tuberculosis (TB) drug discovery and biology follow the same pattern.

View Article and Find Full Text PDF

Pichia yeasts have been recognized as important microbial cell factories in the biotechnological industry. Notably, the Pichia pastoris and Pichia stipitis species have attracted much research interest due to their unique cellular physiology and metabolic capability: P. pastoris has the ability to utilize methanol for cell growth and recombinant protein production, while P.

View Article and Find Full Text PDF

Background: The construction of customized nucleic acid sequences allows us to have greater flexibility in gene design for recombinant protein expression. Among the various parameters considered for such DNA sequence design, individual codon usage (ICU) has been implicated as one of the most crucial factors affecting mRNA translational efficiency. However, previous works have also reported the significant influence of codon pair usage, also known as codon context (CC), on the level of protein expression.

View Article and Find Full Text PDF

Background: Constraint-based flux analysis of metabolic network model quantifies the reaction flux distribution to characterize the state of cellular metabolism. However, metabolites are key players in the metabolic network and the current reaction-centric approach may not account for the effect of metabolite perturbation on the cellular physiology due to the inherent limitation in model formulation. Thus, it would be practical to incorporate the metabolite states into the model for the analysis of the network.

View Article and Find Full Text PDF