Publications by authors named "Bevan Elliott"

We report a fully electrical microcantilever device that utilizes capacitance for both actuation and detection and show that it can characterize various gases with a bare silicon microcantilever. We find the motion of the cantilever as it rings down when the oscillating force is removed, by measuring the voltage induced by the oscillating capacitance in the microcantilever∕counterelectrode system. The ringdown waveform was analyzed using an iterative numerical algorithm to calculate the oscillator motion, modeling the cantilever∕electrode capacitance to calculate the electrostatic force.

View Article and Find Full Text PDF

While the trimetallic nitrides of Sc, Y and the lanthanides between Gd and Lu preferentially template C(80) cages, M(3)N@C(80), and while those of Ce, Pr and Nd preferentially template the C(88) cage, M(3)N@C(88), we show herein that the largest metallic nitride cluster, La(3)N, preferentially leads to the formation of La(3)N@C(96) and to a lesser extent the La(3)N@C(88). This is the first time that La(3)N is successfully encapsulated inside fullerene cages. La(3)N@C(2n) metallofullerenes were synthesized by arcing packed graphite rods in a modified Krätschmer-Huffman arc reactor, extracted from the collected soot and identified by mass spectroscopy.

View Article and Find Full Text PDF

A reactivity study of the higher TNT EMFs of gadolinium is reported here showing that the reactivity substantially decreases when the fullerene cage gets larger.

View Article and Find Full Text PDF

We report an efficient method for the preparation and purification of the Ih and the D5h isomers of Tm3N@C80. Following preparation in a Kratschmer-Huffman electric-arc generator, the Tm3N@C80 isomers were obtained by a chemical separation process followed by a one-stage isomer selective chromatographic high-performance liquid chromatography (HPLC) separation (pyrenyl, 5PYE column). The HPLC chromatographic retention behavior on a pentabromobenzyl (5PBB) column suggests a charge transfer of approximately 6 electrons; [M3N] 6+@C80(6-) and the chromatographic retention mechanisms of the Ih and the D5h isomers of Tm3N@C80 on both 5PBB and 5PYE columns are discussed.

View Article and Find Full Text PDF

Three new families of trimetallic nitride template endohedral metallofullerenes (TNT EMFs), based on cerium, praseodymium, and neodymium clusters, were synthesized by vaporizing packed graphite rods in a conventional Krätschmer-Huffman arc reactor. Each of these families of metallofullerenes was identified and characterized by mass spectroscopy, HPLC, UV/Vis-NIR spectroscopy, and cyclic voltammetry. The mass spectra and HPLC chromatograms show that these larger metallic clusters are preferentially encapsulated by a C(88) cage.

View Article and Find Full Text PDF

High-performance liquid chromatography was used to isolate two new trimetallic nitride endohedral fullerenes, Gd3N@C2n (n = 42 and 44), and they were characterized by MALDI-TOF mass spectrometry, UV-vis-NIR, and cyclic voltammetry. It was found that their electronic HOMO-LUMO gaps depend pronouncedly on the size of the cage, from a large band gap for Gd3N@C80 (2.02 V) to a small band gap for Gd3N@C88 (1.

View Article and Find Full Text PDF

EPR spectra attributed to the endohedral metallofullerene Cu@C60 are better explained by the previously characterized Cu(II) dithiocarbamate family of compounds.

View Article and Find Full Text PDF

The carbon nanoparticles obtained from either arcing of graphite under water or thermal annealing of nanodiamonds are commonly called carbon nano onions (CNOs), or spherical graphite, as they are made of concentric fullerene cages separated by the same distance as the shells of graphite. A more careful analysis reveals some dramatic differences between the particles obtained by these two synthetic methods. Physicochemical methods indicate that the CNOs obtained from nanodiamonds (N-CNOs) are smaller and contain more defects than the CNOs obtained from arcing (A-CNOs).

View Article and Find Full Text PDF

Crystallographic data for the pyrrolidine adduct Y3N@C80C4H9N x 2.5CS2 reveals a slightly pyramidalized Y3N unit with idealized mirror symmetry that straddles the site of addition but does not directly interact with the addend.

View Article and Find Full Text PDF

The unexpected isomerization of N-ethyl [6,6]-pyrrolidino-Y3N@C80 to the [5,6] regioisomer is reported, as well as the synthesis, characterization, and electrochemical analysis of Er3N@C80 derivatives. A complete electrochemical study of the M3N@C80 species (M = Sc, Y, Er) and their derivatives is presented. We introduce electrochemistry as a new tool in the characterization of the [5,6] and [6,6] regioisomers of trimetallic nitride endohedral metallofullerenes.

View Article and Find Full Text PDF

A photoswitchable azobenzene-phthalocyanine-azobenzene triad has been synthesized and its electrochemical properties determined. Energy transfer among the subunits allows for modification of the E-Z ratio by selective excitation of the phthalocyanine moiety.

View Article and Find Full Text PDF

Carbon nano-onions (CNOs) represent a still largely unexplored carbon allotrope. Promising properties of these unique carbon structures are driving the research efforts in this area, but many technical problems remain in their preparation, derivatization, separation and characterization. In this article, we report the preparation, partial purification, and multiple functionalization and solubilization of CNOs.

View Article and Find Full Text PDF

Two electrochemical oxidation waves assigned to the D(5h) isomer of Sc(3)N@C(80) have been identified, and a 270-mV difference in the first electrochemical oxidation potentials of the I(h) and D(5h) isomers has been measured. On the basis of this oxidative potential difference, a strategy for isomeric purification involving a selective chemical oxidation of the D(5h) isomer is reported. Variable scan cyclic voltammetry of the resultingly pure Sc(3)N@C(80) I(h) isomer shows evidence of a rapid endohedral chemical reaction following the first reduction process.

View Article and Find Full Text PDF