Presilphiperfolan-8β-ol synthase (BcBOT2), a substrate-promiscuous sesquiterpene cyclase (STC) of fungal origin, is capable of converting two new farnesyl pyrophosphate (FPP) derivatives modified at C7 of farnesyl pyrophosphate (FPP) bearing either a hydroxymethyl group or a methoxymethyl group. These substrates were chosen based on a computationally generated model. Biotransformations yielded five new oxygenated terpenoids.
View Article and Find Full Text PDFDigitalization with integrated devices, digital and physical assistants, automation, and simulation is setting a new direction for laboratory work. Even with complex research workflows, high staff turnover, and a limited budget some laboratories have already shown that digitalization is indeed possible. However, academic bioprocess laboratories often struggle to follow the trend of digitalization.
View Article and Find Full Text PDFThe increased occurrence of antibiotic resistance and the harmful use of pesticides are a major problem of modern times. A ban on the use of antibiotics as growth promoters in animal breeding has put a focus on the probiotics market. Probiotic food supplements are versatile and show promising results in animal and human nutrition.
View Article and Find Full Text PDFis a promising probiotic, because it combines probiotic properties of and the ability of to form endospores. Due to this hybrid relationship, cultivation of this organism is challenging. As the probiotics market continues to grow, there is a new focus on the production of these microorganisms.
View Article and Find Full Text PDFIn the field of bioprocess development miniaturization, parallelization and flexibility play a key role reducing costs and time. To precisely meet these requirements, additive manufacturing (3D-printing) is an ideal technology. 3D-printing enables rapid prototyping and cost-effective fabrication of individually designed devices with complex geometries on demand.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created a public crisis. Many medical and public institutions and businesses went into isolation in response to the pandemic. Because SARS-CoV-2 can spread irrespective of a patient's course of disease, these institutions' continued operation or reopening based on the assessment and control of virus spread can be supported by targeted population screening.
View Article and Find Full Text PDFBioengineering (Basel)
December 2022
In recent years, the bioprocessing industry has experienced significant growth and is increasingly emerging as an important economic sector. Here, efficient process management and constant control of cellular growth are essential. Good product quality and yield can only be guaranteed with high cell density and high viability.
View Article and Find Full Text PDFBackground: Detection of seroconversion after SARS-CoV-2-infection or vaccination is relevant to discover subclinical cases and recognize patients with a possible immunity.
Objectives: Test performance, effects of age, time-point of seroconversion and immune status regarding neutralizing antibodies (NAbs) and T-cell-reactivity were investigated.
Study Design: Two antibody assays (Viramed-Test for S/N-specific IgG, Roche-Test for N-specific IgA, -M, -G) were evaluated with classified samples.
Integrating optical sensors and 3D-printed optics into single-use (SU) cultivation vessels for customized, tailor-made equipment could be a next big step in the bioreactor and screening platform development enabling online bioprocess monitoring. Many different parameters such as pH, oxygen, carbon dioxide and optical density (OD) can be monitored more easily using online measuring instruments compared to offline sampling. Space-saving integrated sensors in combination with adapted optics such as prisms open up vastly new possibilities to precisely guide light through SU vessels.
View Article and Find Full Text PDFspp. endospores are important dormant cell forms and are distributed widely in environmental samples. While these endospores can have important industrial value (e.
View Article and Find Full Text PDFModern 3D printers enable not only rapid prototyping, but also high-precision printing-microfluidic devices with channel diameters of just a few micrometres can now be readily assembled using this technology. Such devices offer a myriad of benefits (including miniaturization) that significantly reduce sample and buffer volumes and lead to lower process costs. Although such microfluidic devices are already widely used in the field of biotechnology, there is a lack of research regarding the potential of miniaturization by 3D-printed devices in lab-scale chromatography.
View Article and Find Full Text PDFAs an alternative to classical batch processes, enzyme-catalyzed hydrolysis can also be carried out continuously. To facilitate this, a continuous ceramic capillary membrane reactor system (CCCMRS) was developed which can be operated with various proteolytic enzymes immobilized on the porous ceramic capillary membranes. This system has several advantages over common batch processes regarding stability, reproducibility and controllability and can easily be adapted to optimal reaction conditions and individual preferences.
View Article and Find Full Text PDFIn this report, a fully integrated solution for laboratory digitization is presented. The approach presents a flexible and complete integration method for the digitally assisted workflow. The worker in the laboratory performs procedures in direct interaction with the digitized infrastructure that guides through the process and aids while performing tasks.
View Article and Find Full Text PDFPatchouli oil is a major ingredient in perfumery, granting a dark-woody scent due to its main constituent (-)-patchoulol. The growing demand for patchouli oil has raised interest in the development of a biotechnological process to assure a reliable supply. Herein, we report the production of patchouli oil sesquiterpenes by metabolically engineered strains, using solid-liquid phase partitioning cultivation.
View Article and Find Full Text PDFPolysialic acid (polySia) are α2,8- and/or α2,9-linked homopolymers with interesting properties for meningococcal vaccine development or the cure of human neurodegenerative disorders. With the goal to avoid large scale production of pathogenic bacteria, we compare in the current study the efficacy of conventional polySia production to recombinant approaches using the engineered laboratory safety strain BL21. High cell density cultivation (HCDC) experiments were performed in two different bioreactor systems.
View Article and Find Full Text PDFThe production of pharmaceuticals, industrial chemicals, and food ingredients from biotechnological processes is a vast and rapidly growing industry. While advances in synthetic biology and metabolic engineering have made it possible to produce thousands of new molecules from cells, few of these molecules have reached the market. The traditional methods of strain and bioprocess development that transform laboratory results to industrial processes are slow and use computers and networks only for data acquisition and storage.
View Article and Find Full Text PDFIn this article a gateway module to integrate legacy laboratory devices into the network of the digital laboratory in the 21st century is introduced. The device is based on ready to buy consumer hardware that is easy to get and inexpensive. Depending on the specific requirements of the desired application (bare embedded computer, RS232 serial port connector, IP65 certified casing and connectors) the needed investment ranges from about 95 € up to 200 €.
View Article and Find Full Text PDFPolysialic acid (polySia) is a linear homopolymer of varying chain lengths that exists mostly on the outer cell membrane surface of certain bacteria, such as () K1. PolySia, with an average degree of polymerization of 20 (polySia avDP20), possesses material properties that can be used for therapeutic applications to treat inflammatory neurodegenerative diseases. The fermentation of K1 enables the large-scale production of endogenous long-chain polySia (DP ≈ 130) (LC polySia), from which polySia avDP20 can be manufactured using thermal hydrolysis.
View Article and Find Full Text PDFMonoclonal antibodies are conquering the biopharmaceutical market because they can be used to treat a variety of diseases. Therefore, it is very important to establish robust and optimized processes for their production. In this article, the first step of chromatography (Protein A chromatography) in monoclonal antibody purification was optimized with a focus on the critical elution step.
View Article and Find Full Text PDFThe patchoulol synthase (PTS) from Pogostemon cablin is a versatile sesquiterpene synthase and produces more than 20 valuable sesquiterpenes by conversion of the natural substrate farnesyl pyrophosphate (FPP). PTS has the potential to be used as a biocatalyst for the production of valuable sesquiterpenes such as (-)-patchoulol. The objective of the present study is to develop an efficient biotransformation and to characterize the biocatalytic mechanism of the PTS in detail.
View Article and Find Full Text PDFThe sesquiterpene (+)-zizaene is the direct precursor of khusimol, the main fragrant compound of the vetiver essential oil from and used in nearly 20% of men's fine perfumery. The biotechnological production of such fragrant sesquiterpenes is a promising alternative towards sustainability; nevertheless, product recovery from fermentation is one of the main constraints. In an effort to improve the (+)-zizaene recovery from a metabolically-engineered , we developed an integrated bioprocess by coupling fermentation and (+)-zizaene recovery using adsorber extractants.
View Article and Find Full Text PDFThe vetiver essential oil from contains fragrant sesquiterpenes used widely in the formulation of nearly 20% of men's cosmetics. The growing demand and issues in the supply have raised interest in the microbial production of the sesquiterpene khusimol, the main compound of the vetiver essential oil due to its woody smell. In this study, we engineered the biosynthetic pathway for the production of (+)-zizaene, the immediate precursor of khusimol.
View Article and Find Full Text PDFPolysialic acid (polySia) is widely investigated in various biopharmaceutical applications (e.g. treatment of inflammatory neurodegenerative diseases), whereby a certain polySia chain length with an average degree of polymerization 20 (polySia avDP20) shows most promising effects.
View Article and Find Full Text PDFThe natural production of patchouli oil in developing countries cannot meet the increasing demand any more. This leads to socioecological consequences, such as the use of arable land, which is actually intended for food. Hence, the world market price increased up to $150/kg.
View Article and Find Full Text PDFThree-dimensional (3D)-bioprinting enables scientists to mimic in vivo micro-environments and to perform in vitro cell experiments under more physiological conditions than is possible with conventional two-dimensional (2D) cell culture. Cell-laden biomaterials (bioinks) are precisely processed to bioengineer tissue three-dimensionally. One primarily used matrix material is sodium alginate.
View Article and Find Full Text PDF