Publications by authors named "Beurskens M"

Two novel web apps for W7-X are introduced: Profile Cooker and Power House. They are designed to streamline the workflow of profile fitting and power balance analysis while offering a graphical user interface that works in any common browser. This allows us to compile a comprehensive database of experimental power balance results.

View Article and Find Full Text PDF

Larger fusion experiments require long beam paths for laser diagnostics, which requires mechanical stability and measures to deal with remaining alignment variations. At the same time, due to technical and organizational boundary conditions, calibrations become challenging. The current mid-sized experiments face the same issues, yet on a smaller scale, which makes them ideal testing environments for novel calibration methods, since a comparison with the established best practices is still possible.

View Article and Find Full Text PDF

Skin-compatible printed stretchable conductors that combine a low gauge factor with a high durability over many strain cycles are still a great challenge. Here, a graphene nanoplatelet-based colloidal ink utilizing a skin-compatible thermoplastic polyurethane (TPU) binder with adjustable rheology is developed. Stretchable conductors that remain conductive even under 100% strain and demonstrate high fatigue resistance to cyclic strains of 20-50% are realized via printing on TPU.

View Article and Find Full Text PDF

We assess the magnetic field configuration in modern fusion devices by comparing experiments with the same heating power, between a stellarator and a heliotron. The key role of turbulence is evident in the optimized stellarator, while neoclassical processes largely determine the transport in the heliotron device. Gyrokinetic simulations elucidate the underlying mechanisms promoting stronger ion scale turbulence in the stellarator.

View Article and Find Full Text PDF

Research on magnetic confinement of high-temperature plasmas has the ultimate goal of harnessing nuclear fusion for the production of electricity. Although the tokamak is the leading toroidal magnetic-confinement concept, it is not without shortcomings and the fusion community has therefore also pursued alternative concepts such as the stellarator. Unlike axisymmetric tokamaks, stellarators possess a three-dimensional (3D) magnetic field geometry.

View Article and Find Full Text PDF

We theoretically assess two mechanisms thought to be responsible for the enhanced performance observed in plasma discharges of the Wendelstein 7-X stellarator experiment fueled by pellet injection. The effects of the ambipolar radial electric field and the electron density peaking on the turbulent ion heat transport are separately evaluated using large-scale gyrokinetic simulations. The essential role of the stellarator magnetic geometry is demonstrated, by comparison with a tokamak.

View Article and Find Full Text PDF

The Charge Exchange Recombination Spectroscopy (CXRS) diagnostic has become a routine diagnostic on almost all major high temperature fusion experimental devices. For the optimized stellarator Wendelstein 7-X (W7-X), a highly flexible and extensive CXRS diagnostic has been built to provide high-resolution local measurements of several important plasma parameters using the recently commissioned neutral beam heating. This paper outlines the design specifics of the W7-X CXRS system and gives examples of the initial results obtained, including typical ion temperature profiles for several common heating scenarios, toroidal flow and radial electric field derived from velocity measurements, beam attenuation via beam emission spectra, and normalized impurity density profiles under some typical plasma conditions.

View Article and Find Full Text PDF

A new method for in situ spectral calibration of Thomson scattering diagnostics is proposed. The idea of the method is to apply a wavelength tunable optical parametric oscillator for measurements of Rayleigh scattering at different wavelengths, from which relative sensitivities can be calculated. This extends the usual approach where Rayleigh scattering is used only at a single wavelength for the absolute calibration and spectral sensitivities are obtained separately.

View Article and Find Full Text PDF

This paper presents the approach of the dual-laser wavelength Thomson scattering (TS) system for the Wendelstein 7-X stellarator. The dual-laser wavelength TS method is based on two lasers with different wavelengths being fired quasi-simultaneously. This method has two advantages compared to a single laser wavelength TS system.

View Article and Find Full Text PDF

This paper describes the design of the Thomson scattering system at the Wendelstein 7-X stellarator. For the first operation campaign we installed a 10 spatial channel system to cover a radial half profile of the plasma cross section. The start-up system is based on one Nd:YAG laser with 10 Hz repetition frequency, one observation optics, five fiber bundles with one delay line each, and five interference filter polychromators with five spectral channels and silicon avalanche diodes as detectors.

View Article and Find Full Text PDF

Wendelstein 7-X, a superconducting optimized stellarator built in Greifswald/Germany, started its first plasmas with the last closed flux surface (LCFS) defined by 5 uncooled graphite limiters in December 2015. At the end of the 10 weeks long experimental campaign (OP1.1) more than 20 independent diagnostic systems were in operation, allowing detailed studies of many interesting plasma phenomena.

View Article and Find Full Text PDF

The Joint European Torus (JET) high resolution Thomson scattering (HRTS) system measures radial electron temperature and density profiles. One of the key capabilities of this diagnostic is measuring the steep pressure gradient, termed the pedestal, at the edge of JET plasmas. The pedestal is susceptible to limiting instabilities, such as Edge Localised Modes (ELMs), characterised by a periodic collapse of the steep gradient region.

View Article and Find Full Text PDF

At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron temperature is determined from the measurements. The current state of the interferometer hardware, the calibration setup, and the analysis technique for calibration and plasma operation are described.

View Article and Find Full Text PDF

A practical way of estimating statistical errors of a Thomson scattering diagnostic measuring plasma electron temperature and density is described. Analytically derived expressions are successfully tested with Monte Carlo simulations and implemented in an automatic data processing code of the JET LIDAR diagnostic.

View Article and Find Full Text PDF

The instrument function of the high resolution Thomson scattering (HRTS) diagnostic in the Joint European Torus (JET) has been calculated for use in improved pedestal profile analysis. The full width at half maximum (FWHM) of the spatial instrument response is (22 ± 1) mm for the original HRTS system configuration and depends on the particular magnetic topology of the JET plasmas. An improvement to the optical design of the laser input system is presented.

View Article and Find Full Text PDF

New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. [Phys. Rev.

View Article and Find Full Text PDF

Deconvolution of Thomson scattering (TS) profiles is required when the gradient length of the electron temperature (T(e)) or density (n(e)) are comparable to the instrument function length (Δ(R)). The most correct method for deconvolution to obtain underlying T(e) and n(e) profiles is by consideration of scattered signals. However, deconvolution at the scattered signal level is complex since it requires knowledge of all spectral and absolute calibration data.

View Article and Find Full Text PDF

The present work is motivated by a long standing discrepancy between the electron temperature measurements of Thomson scattering (TS) and electron cyclotron emission (ECE) diagnostics for plasmas with strong auxiliary heating observed at both JET and TFTR above 6–7 keV, where in some cases the ECE electron temperature measurements can be 15%–20% higher than the TS measurements. Recent analysis based on ECE results at JET has shown evidence of distortions to the Maxwellian electron velocity distribution and a correlation with the TS and ECE discrepancies has been suggested. In this paper, a technique to determine the presence of non-Maxwellian behavior using TS diagnostics is outlined.

View Article and Find Full Text PDF

Dust particles have been observed with Thomson scattering systems on several tokamaks. We present here the first evidence of dust particles observed by the new high resolution Thomson scattering system on JET. The system consists of filter spectrometers that analyze the Thomson scattering spectrum from 670 to 1050 nm in four spectral channels.

View Article and Find Full Text PDF

The light detection and ranging Thomson scattering (TS) diagnostic is advantageous since it only requires a single view port into the tokamak. This technique requires a short pulse laser at high energy, usually showing a limited repetition rate. Having multiple lasers will increase the repetition rate.

View Article and Find Full Text PDF

We report the identification of a localized current structure inside the JET plasma. It is a field-aligned closed helical ribbon, carrying current in the same direction as the background current profile (cocurrent), rotating toroidally with the ion velocity (corotating). It appears to be located at a flat spot in the plasma pressure profile, at the top of the pedestal.

View Article and Find Full Text PDF

Absolute calibration of LIDAR Thomson scattering systems on large fusion devices may be achieved using rotational Raman scattering. The choice of calibrating gas molecule presents different options and design trade-offs and is likely to be strongly dependent on the laser wavelength selected. Raman scattering of hydrogenic molecules produces a very broad spectrum, however, with far fewer scattered photons than scattering from nitrogen or oxygen at the same gas pressure.

View Article and Find Full Text PDF

Microscopic detection of Plasmodium vivax gametocytes, the sexual life stage of this malaria parasite, is insensitive because P. vivax parasitaemia is low. To detect and quantify gametocytes a more sensitive, quantitative real-time Pvs25-QT-NASBA based on Pvs25 mRNA was developed and tested in two clinical sample sets from three different continents.

View Article and Find Full Text PDF

The edge light detection and ranging (LIDAR) Thomson scattering diagnostic at the Joint European Torus fusion experiment uses a 3 J ruby laser to measure the electron density and temperature profile at the plasma edge. The original system used a 1 GHz digitizer and detectors with response times of approximately 650 ps and effective quantum efficiencies <7%. This system has recently been enhanced with the installation of a new 8 GHz digitizer and four new ultrafast GaAsP microchannel plate photomultiplier tube detectors with response times of <300 ps and effective quantum efficiencies in the range of approximately 13%-20% (averaged over lambda=500-700 nm).

View Article and Find Full Text PDF