With a seminal work of Raghu and Haldane in 2008, concepts of topology have been introduced into optical systems, where some of the most promising routes to an application are efficient and highly coherent topological lasers. While some attempts have been made to excite such structures electrically, the majority of published experiments use a form of laser excitation. In this paper, we use a lattice of vertical resonator polariton micropillars to form an exponentially localized topological Su-Schrieffer-Heeger defect.
View Article and Find Full Text PDFArtificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many-body effects, and phenomena arising from non-trivial topology. Exciton-polaritons, bosonic part-light and part-matter quasiparticles, combine pronounced nonlinearities with the possibility of on-chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many-body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra-stable Frenkel excitons.
View Article and Find Full Text PDFInteracting bosonic particles in artificial lattices have proven to be a powerful tool for the investigation of exotic phases of matter as well as phenomena resulting from nontrivial topology. Exciton-polaritons, bosonic quasi-particles of light and matter, have been shown to combine the on-chip benefits of optical systems with strong interactions, inherited from their matter character. Technologically significant semiconductor platforms strictly require cryogenic temperatures.
View Article and Find Full Text PDFWe demonstrate a deterministic Purcell-enhanced single photon source realized by integrating an atomically thin WSe layer with a circular Bragg grating cavity. The cavity significantly enhances the photoluminescence from the atomically thin layer and supports single photon generation with (0) < 0.25.
View Article and Find Full Text PDFCircular Bragg gratings compose a very appealing photonic platform and nanophotonic interface for the controlled light-matter coupling of emitters in nanomaterials. Here, we discuss the integration of exfoliated monolayers of WSe with GaInP Bragg gratings. We apply hyperspectral imaging to our coupled system, and explore the spatio-spectral characteristics of our coupled monolayer-cavity system.
View Article and Find Full Text PDFInteracting Bosons in artificial lattices have emerged as a modern platform to explore collective manybody phenomena and exotic phases of matter as well as to enable advanced on-chip simulators. On chip, exciton-polaritons emerged as a promising system to implement and study bosonic non-linear systems in lattices, demanding cryogenic temperatures. We discuss an experiment conducted on a polaritonic lattice at ambient conditions: We utilize fluorescent proteins providing ultra-stable Frenkel excitons.
View Article and Find Full Text PDFWe discuss coupling of site-selectively induced quantum emitters in exfoliated monolayers of WSe to plasmonic nanostructures. Gold nanorods of 20 nm-240 nm size, which are arranged in pitches of a few micrometers on a dielectric surface, act as seeds for the formation of quantum emitters in the atomically thin materials. We observe characteristic narrow-band emission signals from the monolayers, which correspond well with the positions of the metallic nanopillars with and without thin dielectric coating.
View Article and Find Full Text PDFBosonic condensation belongs to the most intriguing phenomena in physics, and was mostly reserved for experiments with ultra-cold quantum gases. More recently, it became accessible in exciton-based solid-state systems at elevated temperatures. Here, we demonstrate bosonic condensation driven by excitons hosted in an atomically thin layer of MoSe, strongly coupled to light in a solid-state resonator.
View Article and Find Full Text PDFWe report a systematic study of the temperature and excitation density behavior of an AlAs/AlGaAs, vertically emitting microcavity with embedded ternary AlGaAs/AlAs quantum wells in the strong coupling regime. Temperature-dependent photoluminescence measurements of the bare quantum wells indicate a crossover from the type-II indirect to the type-I direct transition. The resulting mixing of quantum well and barrier ground states in the conduction band leads to an estimated exciton binding energy systematically exceeding 25 meV.
View Article and Find Full Text PDFSolid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light-matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics, as they interact strongly with light at the ultimate monolayer limit.
View Article and Find Full Text PDF