Publications by authors named "Betty Pun"

Ambient measurements from SEARCH and model results from CMAQ-MADRID are analyzed side by side for the southeastern United States to understand the strengths and weaknesses of an air quality model in reproducing key spatial and temporal patterns related to organic aerosol (OA), with inferences regarding secondary organic aerosol (SOA). The model predicts a larger difference in OA concentrations between an urban (JST) and a rural site (YRK) than indicated by measurements. Modeled OA concentrations at JST and YRK are more strongly correlated than measurements.

View Article and Find Full Text PDF

Three mathematical models of air quality (CMAQ, CMAQ-MADRID, and REMSAD) are applied to simulate the response of atmospheric fine particulate matter (PM2.5) concentrations to reductions in the emissions of gaseous precursors for a 10 day period of the July 1999 Southern Oxidants Study (SOS) in Nashville. The models are shown to predict similar directions of the changes in PM2.

View Article and Find Full Text PDF

A new model for atmospheric secondary organic aerosol (SOA) is presented for biogenic compounds. It is based to the extent possible on experimental molecular SOA data, and it is compatible with any existing gas-phase chemical kinetic mechanism. Six SOA precursors or groups of precursors are used to represent biogenic monoterpenes and sesquiterpenes.

View Article and Find Full Text PDF

The Models-3 Community Multiscale Air Quality (CMAQ) Modeling System and the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) were applied to simulate the period June 29-July 10, 1999, of the Southern Oxidants Study episode with two nested horizontal grid sizes: a coarse resolution of 32 km and a fine resolution of 8 km. The predicted spatial variations of ozone (O3), particulate matter with an aerodynamic diameter less than or equal to 2.5 microm (PM2.

View Article and Find Full Text PDF

The Community Multiscale Air Quality model (CMAQ) was modified to simulate the atmospheric fate and transport of benzene and diesel particles. We simulated the July 11-15, 1995 period over a domain covering the eastern United States with a 12-km horizontal resolution and a finer (4 km) resolution over a part of the northeastern United States that includes Washington, DC and New York City. The meteorological fields were obtained from a simulation conducted earlier with the mesoscale model MM5.

View Article and Find Full Text PDF

The formation of secondary organic aerosols (SOA) is simulated for the Nashville/western Tennessee domain using three recent SOA modules incorporated into the three-dimensional air quality model, CMAQ. The Odum/Griffin et al. and CMU/STI modules represent SOA absorptive partitioning into a mixture of primary and secondary particulate organic compounds (OC), with some differences in the formulation of the absorption process and the selection of SOA species and their precursors.

View Article and Find Full Text PDF

The weekly cycles of atmospheric ozone (O3) are of interest because they provide information about the response of O3 to changes in anthropogenic emissions from weekdays to weekends. The weekly behavior of O3 in Chicago, IL; Philadelphia, PA; and Atlanta, GA, is contrasted. In Chicago and Philadelphia, maximum 1-hr average O3 increases on weekends.

View Article and Find Full Text PDF

As anthropogenic emissions of ozone (O3) precursors, fine particulate matter (PM2.5), and PM2.5 precursors continue to decrease in the United States, the fraction of O3 and PM2.

View Article and Find Full Text PDF