Background & Aims: Development of new and more effective therapies against hepatitis B virus (HBV) is limited by the lack of suitable small animal models. The HBV transgenic mouse model containing an integrated overlength 1.3-mer construct has yielded crucial insights, but this model unfortunately lacks covalently closed circular DNA (cccDNA), the episomal HBV transcriptional template, and cannot be cured given that HBV is integrated in every cell.
View Article and Find Full Text PDFBRIT1 has emerged as a novel key player in homologous recombination (HR). It is located in 8p23, a locus frequently deleted in hepatocellular carcinoma (HCC). Previously, we found that BRIT1-deficiency triggered genomic instability and tumor formation in our mouse model.
View Article and Find Full Text PDFThe hepatitis B virus (HBV) regulatory HBx protein is required for infection, and its binding to cellular damaged DNA binding protein 1 (DDB1) is critical for this function. DDB1 is an adaptor protein for the cullin 4A Really Interesting New Gene (RING) E3 ubiquitin ligase (CRL4) complex and functions by binding cellular DDB1 cullin associated factor (DCAF) receptor proteins that recruit substrates for ubiquitination and degradation. We compared the proteins found in the CRL4 complex immunoprecipitated from uninfected versus HBV-infected hepatocytes from human liver chimeric mice for insight into mechanisms by which HBV and the cell interact within the CRL4 complex.
View Article and Find Full Text PDFFive matching sets of nonmalignant liver tissues and hepatocellular carcinoma (HCC) samples from individuals chronically infected with hepatitis B virus (HBV) were examined. The HBV genomic sequences were determined by using overlapping PCR amplicons covering the entire viral genome. Four pairs of tissues were infected with HBV genotype C, while one pair was infected with HBV genotype B.
View Article and Find Full Text PDFChronic hepatitis B virus infection is a significant risk factor for cirrhosis and hepatocellular carcinoma. The HBx protein is required for virus replication, but the lack of robust infection models has hindered our understanding of HBx functions that could be targeted for antiviral purposes. We briefly review three properties of HBx: its binding to DDB1 and its regulation of cell survival and metabolism, to illustrate how a single viral protein can have multiple effects in a cell.
View Article and Find Full Text PDFUnlabelled: Chronic hepatitis B virus infection is a major risk factor for hepatocellular carcinoma (HCC). Hepatitis B virus X protein (HBx) is a hepatitis B virus protein that has multiple cellular functions, but its role in HCC pathogenesis has been controversial. Farnesoid X receptor (FXR) is a nuclear receptor with activities in anti-inflammation and inhibition of hepatocarcinogenesis.
View Article and Find Full Text PDFCold Spring Harb Perspect Med
January 2016
The efficient replication of hepatitis B virus (HBV) requires the HBV regulatory hepatitis B virus X (HBx) protein. The exact contributions of HBx are not fully understood, in part because of the limitations of the assays used for its study. When HBV replication is driven from a plasmid DNA, the contribution of HBx is modest.
View Article and Find Full Text PDFBackground And Aims: Understanding the molecular pathogenesis of hepatocellular carcinoma (HCC) is essential to identify therapeutic targets. A hepatitis B virus (HBV) related double transgenic murine model was developed.
Methods: Liver specific expression of HBV X protein (HBx) and insulin receptor substrate 1 (IRS1) was achieved and transgenic mice were followed from birth to age 21 months.
The hepatitis B virus (HBV) causes acute and chronic hepatitis, and the latter is a major risk factor for the development of hepatocellular carcinoma (HCC). HBV encodes a 17-kDa regulatory protein, HBx, which is required for virus replication. Although the precise contribution(s) of HBx to virus replication is unknown, many viruses target cellular pathways to create an environment favorable for virus replication.
View Article and Find Full Text PDFDiverse epidemiological factors are associated with hepatocellular carcinoma (HCC) prevalence in different populations. However, the global landscape of the genetic changes in HCC genomes underpinning different epidemiological and ancestral backgrounds still remains uncharted. Here a collection of data from 503 liver cancer genomes from different populations uncovered 30 candidate driver genes and 11 core pathway modules.
View Article and Find Full Text PDFChronic infection with hepatitis B virus (HBV) is a risk factor for developing hepatocellular carcinoma (HCC). The life cycle of HBV is complex and has been difficult to study because HBV does not infect cultured cells. The HBV regulatory X protein (HBx) controls the level of HBV replication and possesses an HCC cofactor role.
View Article and Find Full Text PDFHepatitis B virus (HBV) infection is an important risk factor for hepatocellular carcinoma (HCC). The hepatitis B virus X protein (HBx), a multifunctional regulatory protein encoded by HBV, is known to be involved in stimulation of viral replication by modulating cell cycle status. HBx is required for maximal virus replication in plasmid-based replication assays in immortalized human liver HepG2 cells and in primary rat hepatocytes.
View Article and Find Full Text PDFRobust hepatitis B virus (HBV) replication is stimulated by the regulatory HBx protein. HBx binds the cellular protein DDB1; however, the importance of this interaction for HBV replication remains unknown. We tested whether HBx binding to DDB1 was required for HBV replication using a plasmid based replication assay in HepG2 cells.
View Article and Find Full Text PDFHepatitis B virus (HBV) encodes the regulatory HBx protein, which is required for virus replication, although its specific role(s) in the replication cycle remains under investigation. An immunoprecipitation/mass spectrometry approach was used to identify four novel HBx binding proteins from the cytoplasmic fraction of HBx transgenic mouse livers. One of these HBx binding partners is beta interferon promoter stimulator 1 (IPS-1), an adaptor protein that plays a critical role in mediating retinoic acid-inducible gene I (RIG-I) signaling, which leads to the activation of beta interferon (IFN-β).
View Article and Find Full Text PDFUnlabelled: Activation of the insulin (IN)/insulin receptor substrate-1 (IRS-1)/mitogen-associated protein kinase (MAPK) and the Wnt/beta-catenin signaling cascades occurs frequently in hepatocellular carcinoma (HCC) associated with persistent viral infection. The aims of this study were to provide a chronic proliferative stimulus through IRS-1 in the context of hepatitis Bx (HBx) protein expression in transgenic mice and determine if constitutive expression of these genes is sufficient to cause hepatocyte dysplasia and cellular transformation. We generated transgenic mice in which the HBx (ATX), IRS-1, or both (ATX+/IRS-1) genes were expressed under a liver-specific promoter.
View Article and Find Full Text PDFIdentifying the requirements for the regulatory HBx protein in hepatitis B virus (HBV) replication is an important goal. A plasmid-based HBV replication assay was used to evaluate whether HBx subcellular localization influences its ability to promote virus replication, as measured by real time PCR quantitation of viral capsid-associated DNA. HBx targeted to the nucleus by a nuclear localization signal (NLS-HBx) was able to restore HBx-deficient HBV replication, while HBx containing a nuclear export signal (NES-HBx) was not.
View Article and Find Full Text PDFThe cycles of cell death and compensatory regeneration that occur during chronic hepatitis B virus (HBV) infection are central to viral pathogenesis and are a risk factor for the development of liver cancer. The HBV genome encodes one regulatory protein, HBx, which is required for virus replication, although its precise role in replication and pathogenesis is unclear. Because HBx can induce the G(0)-G(1) transition in cultured cells, the purpose of this study was to examine the effect of HBx during liver regeneration.
View Article and Find Full Text PDFAlterations in microRNA (miRNA) expression in both human and animal models have been linked to many forms of cancer. Such miRNAs, which act directly as repressors of gene expression, have been found to frequently reside in fragile sites and genomic regions associated with cancer. This study describes a miRNA signature for human primary hepatitis B virus-positive human hepatocellular carcinoma.
View Article and Find Full Text PDFThe 3.2-kb hepatitis B virus (HBV) genome encodes a single regulatory protein termed HBx. While multiple functions have been identified for HBx in cell culture, its role in virus replication remains undefined.
View Article and Find Full Text PDFTransgenic mice expressing the full-length HCV coding sequence were crossed with mice that express the HBV X gene-encoded regulatory protein HBx (ATX mice) to test the hypothesis that HBx expression accelerates HCV-induced liver pathogenesis. At 16 months (mo) of age, hepatocellular carcinoma was identified in 21% of HCV/ATX mice, but in none of the single transgenic animals. Analysis of 8-mo animals revealed that, relative to HCV/WT mice, HCV/ATX mice had more severe steatosis, greater liver-to-body weight ratios, and a significant increase in the percentage of hepatocytes staining for proliferating cell nuclear antigen.
View Article and Find Full Text PDFHumans chronically infected with hepatitis B virus (HBV) are at further risk of liver cancer upon exposure to dietary aflatoxin B1 (AFB1), a carcinogenic product of the mold Aspergillus flavus. For the present study, we utilized double-transgenic mice (ATX mice) that express the HBV X protein (HBx) and possess a bacteriophage lambda transgene to evaluate the in vivo effect of HBx expression on AFB1-induced DNA mutations. The expression of HBx correlated with a 24% increase in mutation frequency overall and an approximately twofold increase in the incidence of G/C-to-T/A transversion mutations following AFB1 exposure.
View Article and Find Full Text PDFHepatitis B virus (HBV) X gene encodes a multifunctional protein that can regulate cellular signaling pathways, interact with cellular transcription factors, and induce hepatocellular oncogenesis. In spite of its diverse activities, the precise role of the X protein in the viral life cycle of HBV remains unclear. To investigate this question, we have produced transgenic mice that carry either the wild-type HBV genome or a mutated HBV genome incapable of expressing the 16.
View Article and Find Full Text PDF