It has been widely shown that biomaterial surface topography can modulate host immune response, but a fundamental understanding of how different topographies contribute to pro-inflammatory or anti-inflammatory responses is still lacking. To investigate the impact of surface topography on immune response, we undertook a systematic approach by analyzing immune response to eight grades of medical grade polyurethane of increasing surface roughness in three models of the human immune system. Polyurethane specimens were produced with defined roughness values by injection molding according to the VDI 3400 industrial standard.
View Article and Find Full Text PDFSingle-domain antibodies have emerged as highly versatile nanoprobes for advanced cellular imaging. For real-time visualization of endogenous antigens, fluorescently labelled nanobodies (chromobodies, CBs) are introduced as DNA-encoded expression constructs in living cells. Commonly, CB expression is driven from strong, constitutively active promoters.
View Article and Find Full Text PDFUnderstanding cellular processes requires the determination of dynamic changes in the concentration of genetically nonmodified, endogenous proteins, which, to date, is commonly accomplished by end-point assays Molecular probes such as fluorescently labeled nanobodies (chromobodies, CBs) are powerful tools to visualize the dynamic subcellular localization of endogenous proteins in living cells. Here, we employed the dependence of intracellular levels of chromobodies on the amount of their endogenous antigens, a phenomenon, which we termed antigen-mediated CB stabilization (AMCBS), for simultaneous monitoring of time-resolved changes in the concentration and localization of native proteins. To improve the dynamic range of AMCBS we generated turnover-accelerated CBs and demonstrated their application in visualization and quantification of fast reversible changes in antigen concentration upon compound treatment by quantitative live-cell imaging.
View Article and Find Full Text PDF