In contrast to pain processing neurons in the spinal cord, where the importance of chloride conductances is already well established, chloride homeostasis in primary afferent neurons has received less attention. Sensory neurons maintain high intracellular chloride concentrations through balanced activity of Na-K-2Cl cotransporter 1 (NKCC1) and K-Cl cotransporter 2 (KCC2). Whereas in other cell types activation of chloride conductances causes hyperpolarization, activation of the same conductances in primary afferent neurons may lead to inhibitory or excitatory depolarization depending on the actual chloride reversal potential and the total amount of chloride efflux during channel or transporter activation.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
March 2019
Phospholipase Cβ (PLCβ)-induced depletion of phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P) transduces a plethora of signals into cellular responses. Importance and diversity of PI(4,5)P-dependent processes led to strong need for biosensors of physiological PI(4,5)P dynamics applicable in live-cell experiments. Membrane PI(4,5)P can be monitored with fluorescently-labelled phosphoinositide (PI) binding domains that associate to the membrane depending on PI(4,5)P levels.
View Article and Find Full Text PDFThe three members of the -like (Elk; K12.1-K12.3) family of voltage-gated K channels are predominantly expressed in neurons, but only little information is available on their physiological relevance.
View Article and Find Full Text PDFBackground And Purpose: Signalling through phospholipase C (PLC) controls many cellular processes. Much information on the relevance of this important pathway has been derived from pharmacological inhibition of the enzymatic activity of PLC. We found that the most frequently employed PLC inhibitor, U73122, activates endogenous ionic currents in widely used cell lines.
View Article and Find Full Text PDFThe two-pore domain potassium (K2P) channels TASK-1 (KCNK3) and TASK-3 (KCNK9) are important determinants of background K(+) conductance and membrane potential. TASK-1/3 activity is regulated by hormones and transmitters that act through G protein-coupled receptors (GPCR) signalling via G proteins of the Gαq/11 subclass. How the receptors inhibit channel activity has remained unclear.
View Article and Find Full Text PDFDrosophila is a well-established model organism for studying innate immunity because of its high resistance against microbial infections and lack of adaptive immunity. In addition, the immune signaling cascades found in Drosophila are evolutionarily conserved. Upon infection, activation of the immune signaling pathways, Toll and Imd, leads to the expression of multiple immune response genes, such as the antimicrobial peptides (AMPs).
View Article and Find Full Text PDF