Publications by authors named "Bettina Schnell"

Approaching threats are perceived through visual looming, a rapid expansion of an image on the retina. Visual looming triggers defensive responses such as freezing, flight, turning, or take-off in a wide variety of organisms, from mice to fish to insects. In response to looming, flies perform rapid evasive turns known as saccades.

View Article and Find Full Text PDF

During voluntary behaviors, animals need to disable any reflexes that could interfere with the intended movements. With the optomotor response, flies stabilize a straight flight path by correcting for unintended deviations sensed as the panoramic motion of the surround. HS cells of the fly are thought to mediate optomotor responses to horizontal motion.

View Article and Find Full Text PDF

To navigate through the world, animals must stabilize their path against disturbances and change direction to avoid obstacles and to search for resources [1, 2]. Locomotion is thus guided by sensory cues but also depends on intrinsic processes, such as motivation and physiological state. Flies, for example, turn with the direction of large-field rotatory motion, an optomotor reflex that is thought to help them fly straight [3-5].

View Article and Find Full Text PDF

Sensory feedback is a ubiquitous feature of guidance systems in both animals and engineered vehicles. For example, a common strategy for moving along a straight path is to turn such that the measured rate of rotation is zero. This task can be accomplished by using a feedback signal that is proportional to the instantaneous value of the measured sensory signal.

View Article and Find Full Text PDF

Sensory systems provide abundant information about the environment surrounding an animal, but only a small fraction of that information is relevant for any given task. One example of this requirement for context-dependent filtering of a sensory stream is the role that optic flow plays in guiding locomotion. Flying animals, which do not have access to a direct measure of ground speed, rely on optic flow to regulate their forward velocity.

View Article and Find Full Text PDF

Important brain functions need to be conserved throughout organisms of extremely varying sizes. Here we study the scaling properties of an essential component of computation in the brain: the single neuron. We compare morphology and signal propagation of a uniquely identifiable interneuron, the HS cell, in the blowfly (Calliphora) with its exact counterpart in the fruit fly (Drosophila) which is about four times smaller in each dimension.

View Article and Find Full Text PDF

Wide-field motion-sensitive neurons in the lobula plate (lobula plate tangential cells, LPTCs) of the fly have been studied for decades. However, it has never been conclusively shown which cells constitute their major presynaptic elements. LPTCs are supposed to be rendered directionally selective by integrating excitatory as well as inhibitory input from many local motion detectors.

View Article and Find Full Text PDF

Recent experiments have shown that motion detection in Drosophila starts with splitting the visual input into two parallel channels encoding brightness increments (ON) or decrements (OFF). This suggests the existence of either two (ON-ON, OFF-OFF) or four (for all pairwise interactions) separate motion detectors. To decide between these possibilities, we stimulated flies using sequences of ON and OFF brightness pulses while recording from motion-sensitive tangential cells.

View Article and Find Full Text PDF

Motion vision is a major function of all visual systems, yet the underlying neural mechanisms and circuits are still elusive. In the lamina, the first optic neuropile of Drosophila melanogaster, photoreceptor signals split into five parallel pathways, L1-L5. Here we examine how these pathways contribute to visual motion detection by combining genetic block and reconstitution of neural activity in different lamina cell types with whole-cell recordings from downstream motion-sensitive neurons.

View Article and Find Full Text PDF

Recent advance in the design of genetically encoded calcium indicators (GECIs) has further increased their potential for direct measurements of activity in intact neural circuits. However, a quantitative analysis of their fluorescence changes (DeltaF) in vivo and the relationship to the underlying neural activity and changes in intracellular calcium concentration (Delta[Ca(2+)](i)) has not been given. We used two-photon microscopy, microinjection of synthetic Ca(2+) dyes and in vivo calibration of Oregon-Green-BAPTA-1 (OGB-1) to estimate [Ca(2+)](i) at rest and Delta[Ca(2+)](i) at different action potential frequencies in presynaptic motoneuron boutons of transgenic Drosophila larvae.

View Article and Find Full Text PDF

In the eye, visual information is segregated into modalities such as color and motion, these being transferred to the central brain through separate channels. Here, we genetically dissect the achromatic motion channel in the fly Drosophila melanogaster at the level of the first relay station in the brain, the lamina, where it is split into four parallel pathways (L1-L3, amc/T1). The functional relevance of this divergence is little understood.

View Article and Find Full Text PDF