Background: The Antarctic krill Euphausia superba is a keystone species in the Southern Ocean ecosystem. This crustacean has an ancestral clock whose main components have been identified and characterized in the past few years. However, the second feedback loop, modulating clock gene expression through two transcription factors, VRI and PDP1, has yet to be described.
View Article and Find Full Text PDFThe Southern Ocean ecosystem has undergone extensive changes in the past two centuries driven by industrial sealing and whaling, climate change and commercial fishing. However, following the end of commercial whaling, some populations of whales in this region are recovering. Baleen whales are reliant on Antarctic krill, which is also the largest Southern Ocean fishery.
View Article and Find Full Text PDFKrill are vital as food for many marine animals but also impacted by global warming. To learn how they and other zooplankton may adapt to a warmer world we studied local adaptation in the widespread Northern krill (Meganyctiphanes norvegica). We assemble and characterize its large genome and compare genome-scale variation among 74 specimens from the colder Atlantic Ocean and warmer Mediterranean Sea.
View Article and Find Full Text PDFAntarctic krill (Euphausia superba, hereafter krill) is a pelagic living crustacean and a key species in the Southern Ocean ecosystem. Krill builds up a huge biomass and its synchronized behavioral patterns, such as diel vertical migration (DVM), substantially impact ecosystem structure and carbon sequestration. However, the mechanistic basis of krill DVM is unknown and previous studies of krill behavior in the laboratory were challenged by complex behavior and large variability.
View Article and Find Full Text PDFAnnual rhythms are observed in living organisms with numerous ecological implications. In the zooplanktonic copepod Calanus finmarchicus, such rhythms are crucial regarding its phenology, body lipid accumulation, and global carbon storage. Climate change drives annual biological rhythms out of phase with the prevailing environmental conditions with yet unknown but potentially catastrophic consequences.
View Article and Find Full Text PDFWith almost a quadrillion individuals, the Antarctic krill processes five million tons of organic carbon every day during austral summer. This high carbon flux requires a broad range of hydrolytic enzymes to decompose the diverse food-derived biopolymers. While krill itself possesses numerous such enzymes, it is unclear, to what extent the endogenous microbiota contribute to the hydrolytic potential of the gut environment.
View Article and Find Full Text PDFThe stomach content of 60 krill specimens from the Southern Ocean were analyzed for the presence of microplastic (MP), by testing different sample volumes, extraction approaches, and applying hyperspectral imaging Fourier-transform infrared spectroscopy (μFTIR). Strict quality control was applied on the generated results. A high load of residual materials in pooled samples hampered the analysis and avoided a reliable determination of putative MP particles.
View Article and Find Full Text PDFThe biochemical composition of Antarctic krill, Euphausia superba, is largely determined by their feeding behaviour. As they supply energy for animals of a higher trophic level and are also commercialized for human consumption, the interest in research on the species is high. Lipids, especially phospholipids, make up a high proportion of dry weight in krill.
View Article and Find Full Text PDFAntarctic krill, crucial to the Southern Ocean ecosystem and a vital fisheries resource, is endangered by climate change. Identifying drivers of krill biomass is therefore essential for determining catch limits and designating protection zones. We present a modeling approach to pinpointing effects of sea surface temperature, ice cover, chlorophyll levels, climate indices, and intraspecific competition.
View Article and Find Full Text PDFis an important grazer in the Southern Ocean and most abundant in the Antarctic Polar Front (APF) region. During recent decades, their distribution expanded southwards. However, it is unclear whether salps can maintain their populations in the high Antarctic regions throughout the year owing to a poor understanding of their physiological responses to changing environmental conditions.
View Article and Find Full Text PDFUnderstanding the vertical migration behaviour of Antarctic krill is important for understanding spatial distribution, ecophysiology, trophic interactions and carbon fluxes of this Southern Ocean key species. In this study, we analysed an eight-month continuous dataset recorded with an ES80 echosounder on board a commercial krill fishing vessel in the southwest Atlantic sector of the Southern Ocean. Our analysis supports the existing hypothesis that krill swarms migrate into deeper waters during winter but also reveals a high degree of variability in vertical migration behaviour within seasons, even at small spatial scales.
View Article and Find Full Text PDFAntarctic krill (Euphausia superba) is a key species of the Southern Ocean, impacted by climate change and human exploitation. Understanding how these changes affect the distribution and abundance of krill is crucial for generating projections of change for Southern Ocean ecosystems. Krill growth is an important indicator of habitat suitability and a series of models have been developed and used to examine krill growth potential at different spatial and temporal scales.
View Article and Find Full Text PDFNext week, the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) convenes in Hobart, Tasmania, to examine the state of marine life in the Southern Ocean. As part of the Antarctic Treaty System, this convention entered into force in 1982, and its focus on the region's environmental integrity has never been more important, given the increasing effects of climate change and commercial fishing. An important focus over the past 40 years has been Antarctic krill, (hereafter krill), a keystone species that helps to hold this marine ecosystem together.
View Article and Find Full Text PDFFin whales (Balaenoptera physalus quoyi) of the Southern Hemisphere were brought to near extinction by twentieth century industrial whaling. For decades, they had all but disappeared from previously highly frequented feeding grounds in Antarctic waters. Our dedicated surveys now confirm their return to ancestral feeding grounds, gathering at the Antarctic Peninsula in large aggregations to feed.
View Article and Find Full Text PDFThe krill species Euphausia superba plays a critical role in the food chain of the Antarctic ecosystem. Significant changes in climate conditions observed in the Antarctic Peninsula region in the last decades have already altered the distribution of krill and its reproductive dynamics. A deeper understanding of the adaptation capabilities of this species is urgently needed.
View Article and Find Full Text PDFThe Antarctic krill (Euphausia superba Dana) is a keystone species in the Southern Ocean that uses an arsenal of hydrolases for biomacromolecule decomposition to effectively digest its omnivorous diet. The present study builds on a hybrid-assembled transcriptome (13,671 ORFs) combined with comprehensive proteome profiling. The analysis of individual krill compartments allowed detection of significantly more different proteins compared to that of the entire animal (1464 vs.
View Article and Find Full Text PDFThe copepod (Crustacea, Copepoda) is a key zooplanktonic species with a crucial position in the North Atlantic food web and significant contributor to ocean carbon flux. Like many other high latitude animals, it has evolved a programmed arrested development called diapause to cope with long periods of limited food supply, while growth and reproduction are timed to take advantage of seasonal peaks in primary production. However, anthropogenic warming is inducing changes in the expected timing of phytoplankton blooms, suggesting phenological mismatches with negative consequences for the N.
View Article and Find Full Text PDFKrill and salps are important for carbon flux in the Southern Ocean, but the extent of their contribution and the consequences of shifts in dominance from krill to salps remain unclear. We present a direct comparison of the contribution of krill and salp faecal pellets (FP) to vertical carbon flux at the Antarctic Peninsula using a combination of sediment traps, FP production, carbon content, microbial degradation, and krill and salp abundances. Salps produce 4-fold more FP carbon than krill, but the FP from both species contribute equally to the carbon flux at 300 m, accounting for 75% of total carbon.
View Article and Find Full Text PDFOver the past decades, two key grazers in the Southern Ocean (SO), krill and salps, have experienced drastic changes in their distribution and abundance, leading to increasing overlap of their habitats. Both species occupy different ecological niches and long-term shifts in their distributions are expected to have cascading effects on the SO ecosystem. However, studies directly comparing krill and salps are lacking.
View Article and Find Full Text PDFOver the last decades, it has been reported that the habitat of the Southern Ocean (SO) key species Antarctic krill (Euphausia superba) has contracted to high latitudes, putatively due to reduced winter sea ice coverage, while salps as Salpa thompsoni have extended their dispersal to the former krill habitats. To date, the potential implications of this population shift on the biogeochemical cycling of the limiting micronutrient iron (Fe) and its bioavailability to SO phytoplankton has never been tested. Based on uptake of fecal pellet (FP)-released Fe by SO phytoplankton, this study highlights how efficiently krill and salps recycle Fe.
View Article and Find Full Text PDFThe ongoing environmental changes in the Southern Ocean may cause a dramatic decrease in habitat quality. Due to its central position in the food web, Antarctic krill (Euphausia superba) is a key species of the marine Antarctic ecosystem. It is therefore crucial to understand how increasing water temperatures affect important krill life-cycle processes.
View Article and Find Full Text PDFJ Adv Model Earth Syst
November 2020
Forced mechanical lifting through cold pool gust fronts can trigger new convection and, as previous work highlights, is enhanced when cold pools collide. However, as shown by conceptual models, the organization of the convective cloud field emerging from two versus three colliding cold pools differs strongly. In idealized dry large-eddy simulations we therefore compare collisions between two and three cold pools.
View Article and Find Full Text PDFSolar light/dark cycles and seasonal photoperiods underpin daily and annual rhythms of life on Earth. Yet, the Arctic is characterized by several months of permanent illumination ("midnight sun"). To determine the persistence of 24h rhythms during the midnight sun, we investigated transcriptomic dynamics in the copepod during the summer solstice period in the Arctic, with the lowest diel oscillation and the highest altitude of the sun's position.
View Article and Find Full Text PDF