Channelrhodopsin 2 (ChR2) is a microbial-type rhodopsin with a putative heptahelical structure that binds all-trans-retinal. Blue light illumination of ChR2 activates an intrinsic leak channel conductive for cations. Sequence comparison of ChR2 with the related ChR1 protein revealed a cluster of charged amino acids within the predicted transmembrane domain 2 (TM2), which includes glutamates E90, E97 and E101.
View Article and Find Full Text PDFThe neuronal glycine transporter 2 (GlyT2) belongs to the large SLC6 family of Na+/Cl--dependent neurotransmitter transporters. At its extreme C-terminus, GlyT2 carries a type III PDZ domain binding motif (PDZ-ligand motif), which interacts with the PDZ domain protein syntenin-1. Here, we investigated the physiological role of the GlyT2 PDZ-ligand motif by a loss-of-function approach.
View Article and Find Full Text PDFThe cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is expressed in many epithelia and in the heart. Phosphorylation of CFTR by protein kinases is thought to be an absolute prerequisite for the opening of CFTR channels. In addition, nucleoside triphosphates were shown to regulate the opening of phosphorylated CFTR.
View Article and Find Full Text PDFThe subtilin gene cluster (spa) of Bacillus subtilis ATCC 6633 is organized in transcriptional units spaBTC, spaS, spaIFEG and spaRK. Specific binding of the response regulator protein SpaR to spaB, spaS and spaI DNA promoter fragments was shown by means of electromobility shift assays. A repeated pentanucleotide sequence spaced by six nucleotides was identified as SpaR binding motif (spa-box).
View Article and Find Full Text PDF