Staphylococcus aureus infections can result in septic and toxic shock with depletion of immune cells and massive cytokine production. Recently, we showed that, in S. aureus-infected Jurkat T cells, alpha-toxin is the major mediator of caspase activation and apoptosis.
View Article and Find Full Text PDFObjective: Hyaluronan (HA) is an important extracellular matrix component and is involved in fluid homeostasis, tissue repair, and response to infections. Previous studies have shown that supplementation of dialysis fluid with high molecular weight HA may have a positive impact on peritoneal solute and fluid transport characteristics. In the present study, we investigated the impact of HA on the synthesis of tissue-type plasminogen activator (t-PA) and its inhibitor, plasminogen activator inhibitor type 1 (PAI-1) in cultured human peritoneal mesothelial cells (MC).
View Article and Find Full Text PDFBackground: Patients treated with peritoneal dialysis frequently suffer from recurrent peritonitis episodes. During peritonitis, inflammatory mediators are released and a serofibrinous exudate is formed in the peritoneal cavity, which promotes fibrosis and abdominal adhesion development. Human peritoneal mesothelial cells (HMC) play a critical role in maintaining the intraperitoneal balance between fibrinolysis and coagulation by expressing the fibrinolytic enzyme tissue-type plasminogen activator (t-PA) and its specific inhibitor, plasminogen activator inhibitor-1 (PAI-1) as well as the procoagulant protein, tissue factor.
View Article and Find Full Text PDFBackground: The continuous physical and chemical irritation of the peritoneum in peritoneal dialysis patients can result in a nonbacterial serositis with increased fibrin deposition, thus promoting peritoneal fibrosis and adhesion development. By expressing the fibrinolytic enzyme tissue-type plasminogen activator (t-PA) and its specific inhibitor, plasminogen activator inhibitor-1 (PAI-1), human peritoneal mesothelial cells (HMC) play an important role in regulating peritoneal fibrinolysis.
Methods: Cultured HMC were used to examine the effect of a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, simvastatin, on the expression of t-PA and PAI-1.
Background: Vascular endothelial growth factor (VEGF) was recently found in peritoneal effluents of peritoneal dialysis (PD) patients. It was suggested that human peritoneal mesothelial cells (HMC) contribute to the intraperitoneal production of VEGF, which may augment vascular permeability, vasodilation and neoangiogenesis in the peritoneal membrane. The present study was designed to assess the influence of proinflammatory cytokines, thrombin, d-glucose and glycated albumin in the regulation of VEGF synthesis in primary HMC cultures.
View Article and Find Full Text PDF